The aim of this paper is to develop a method of study of Tykhonov well-posedness notions for vector valued problems using a class of scalar problems. Having a vectorial problem, the scalarization technique we use allows us to construct a class of scalar problems whose well-posedness properties are equivalent with the most known well-posedness properties of the original problem. Then a well-posedness property of a quasiconvex level-closed problem is derived.