SUPERNOVAE CONSTRAINTS ON COSMOLOGICAL DENSITY PARAMETERS AND COSMIC TOPOLOGY

@article{Rebouas2007SUPERNOVAECO,
  title={SUPERNOVAE CONSTRAINTS ON COSMOLOGICAL DENSITY PARAMETERS AND COSMIC TOPOLOGY},
  author={M J Rebouças},
  journal={arXiv: Astrophysics},
  year={2007},
  pages={1819-1823}
}
  • M. J. Rebouças
  • Published 23 February 2007
  • Physics, Mathematics
  • arXiv: Astrophysics
We illustrate the constraints that a possible detection of a non-trivial spatial topology may place on the cosmological density parameters by considering the $\Lambda$CDM model Poincar\'e dodecahedal space (PDS) topology as a circles-in-the-sky detectable topology. To this end we reanalyze the type Ia supernovae constraints on the density parameter plane $\Omega_k$--$\Omega_{\Lambda}$ and show that a circles-in-the-sky detectable PDS topology gives rise to important constraints on this… 
4 Citations

Figures from this paper

CONSTRAINTS ON DARK ENERGY AND COSMIC TOPOLOGY

A non-trivial spatial topology of the Universe is a potentially observable attribute, which can be probed through the circles-in-the-sky for all locally homogeneous and isotropic universes with no

DARK ENERGY EQUATION OF STATE AND COSMIC TOPOLOGY

The immediate observational consequence of a non-trivial spatial topology of the Universe is that an observer could potentially detect multiple images of radiating sources. In particular, a

Constraints on dark energy equation of state parameters from cosmic topology

Despite our present-day inability to predict the topology of the universe it is expected that we should be able to detect it in the near future. A nontrivial detectable topology of the space section

A note on the large-angle anisotropies in the WMAP cut-sky maps

Recent analyses of the WMAP data seem to indicate the possible presence of large-angle anisotropy in the Universe. If confirmed, these can have important consequences for our understanding of the

References

SHOWING 1-10 OF 17 REFERENCES

Quantum Grav

  • Quantum Grav. 18,
  • 2001

Astron. Astrophys. J. Phys Mon. Not. Roy. Astron. Soc.J. Rebouças

  • Astron. Astrophys. J. Phys Mon. Not. Roy. Astron. Soc.J. Rebouças
  • 2005

Class. Quantum Grav. J.R. Weeks, Mod. Phys. Lett. A18J. Rebouças and R. Tavakol, Class. Quantum Grav. Class. Quantum Grav. Int. J. Mod. Phys. A20

  • Class. Quantum Grav. J.R. Weeks, Mod. Phys. Lett. A18J. Rebouças and R. Tavakol, Class. Quantum Grav. Class. Quantum Grav. Int. J. Mod. Phys. A20
  • 2003

Class. Quantum Grav

  • Class. Quantum Grav
  • 2005

Class. Quantum Grav

  • Class. Quantum Grav
  • 1998

Phys. Rep. Phys. Rep. Braz. J. Phys

  • Phys. Rep. Phys. Rep. Braz. J. Phys
  • 1995

Mon. Not. Roy. Astron. Soc

  • Mon. Not. Roy. Astron. Soc
  • 2006

Phys. Rev. Lett

  • Phys. Rev. Lett
  • 2004

Astrophys. J

  • Astrophys. J
  • 2004

J. Rebouças and R. Tavakol, Class. Quantum Grav.I. Gomero, M.J. Rebouças and R. Tavakol, Int. J. Mod. Phys. A17

  • J. Rebouças and R. Tavakol, Class. Quantum Grav.I. Gomero, M.J. Rebouças and R. Tavakol, Int. J. Mod. Phys. A17
  • 2001