SOCS-3 is frequently methylated in head and neck squamous cell carcinoma and its precursor lesions and causes growth inhibition

Abstract

The suppressors of cytokine signaling (SOCS) are inhibitors of cytokine signaling that function via the Janus kinase (JAK)/signal transducers and activators of transcription (STAT) pathway. Recently, methylation of SOCS-1 and SOCS-3 has been implicated in the tumorigenesis of liver and lung cancer. This study was performed to elucidate the role of SOCS-1 and SOCS-3 in squamous cell carcinoma of the head and neck (HNSCC) and its precursor lesions. HNSCC of 94 patients and corresponding normal mucosa, lymph node metastases as well as 16 high- and 21 low-grade squamous cell dysplasias were studied by using methylation-specific PCR (MSP) for the SOCS-1 and SOCS-3 promoter after microdissection. The presence of SOCS-3 mRNA transcripts was confirmed by semiquantitative real-time PCR, and the SOCS-3 protein was analysed immunohistochemically. SOCS-3 hypermethylation was found in 85/94 HNSCC (90%) and in 10/16 high-grade and 9/21 low-grade dysplasias (63 and 43%, respectively). SOCS-1 promoter hypermethylation was detected in 10/94 HNSCC samples (11%) and in 2/16 high-grade and 1/21 low-grade dysplasias (13 and 5%, respectively). Lymph node metastases exhibited an identical methylation status as the primary tumors. Methylation of the SOCS-3 promoter correlated with downregulation of SOCS-3 transcripts and protein expression in these tumors and various cell lines. In the cell lines tested, SOCS-3 and SOCS-1 transcripts increased upon treatment with the demethylation compound 5-aza-2-deoxycytidine (5-AZA-DC). Overexpression of wild-type SOCS-3 in carcinoma cells with methylated SOCS-3 resulted in the induction of apoptosis and growth suppression as well as downregulation of STAT3, bcl-2 as well as bcl-xL. Our data suggest that promoter methylation and subsequent transcript downregulation of SOCS-3 transcripts and, to a much lesser extent, SOCS-1 are involved in the multistep carcinogenesis of HNSCC. During its involvement in tumor growth, restoration of SOCS-3 may hold treatment potential for HNSCC.

DOI: 10.1038/sj.onc.1208818
0200400'06'07'08'09'10'11'12'13'14'15'16'17
Citations per Year

2,389 Citations

Semantic Scholar estimates that this publication has 2,389 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Weber2005SOCS3IF, title={SOCS-3 is frequently methylated in head and neck squamous cell carcinoma and its precursor lesions and causes growth inhibition}, author={Anette Weber and Ulrich R. Hengge and Walter Bardenheuer and Iris Tischoff and Florian Sommerer and Annett Markwarth and Andreas Dietz and Christian Wittekind and Andrea Tannapfel}, journal={Oncogene}, year={2005}, volume={24}, pages={6699-6708} }