SCALE INVARIANT MARKOV MODELS FOR BAYESIANINVERSION OF LINEAR INVERSE PROBLEMSSt

@inproceedings{Brette1996SCALEIM,
  title={SCALE INVARIANT MARKOV MODELS FOR BAYESIANINVERSION OF LINEAR INVERSE PROBLEMSSt},
  author={ephane Brette and er{\^o}me Idier and - AliMohammad and DjafariLaboratoire and des Signaux},
  year={1996}
}
  • ephane Brette, erôme Idier, +2 authors des Signaux
  • Published 1996
In a Bayesian approach for solving linear inverse problems one needs to specify the prior laws for calculation of the posterior law. A cost function can also be defined in order to have a common tool for various Bayesian estimators which depend on the data and the hyperparameters. The Gaussian case excepted, these estimators are not linear and so depend on the scale of the measurements. In this paper a weaker property than linearity is imposed on the Bayesian estimator, namely the scale… CONTINUE READING

From This Paper

Figures, tables, results, connections, and topics extracted from this paper.
7 Extracted Citations
22 Extracted References
Similar Papers

Referenced Papers

Publications referenced by this paper.
Showing 1-10 of 22 references

Estimating priors in maximum entropy image processing,

  • A. Mohammad-Djafari, G. Demoment
  • Proceedings of IEEE ICASSP,
  • 1990
Highly Influential
7 Excerpts

Scale invariant Bayesian estimators for linear inverse problems,

  • A. Mohammad-Djafari, J. Idier
  • in Proc. of the First ISBA meeting, (San…
  • 1993
Highly Influential
4 Excerpts

Synth ese d'ouverture en radio- astronomie par maximum d'entropie sur la moyenne," in Actes du 13 eme colloque

  • G. Le Besnerais, J. Navaza, G. Demoment
  • 1991
2 Excerpts

Similar Papers

Loading similar papers…