Role of a novel nociceptor autocrine mechanism in chronic pain.

Abstract

We have previously shown, in the rat, that neuropathic and inflammatory events produce a neuroplastic change in nociceptor function whereby a subsequent exposure to a proinflammatory mediator (e.g. prostaglandin E2 ; PGE2 ) produces markedly prolonged mechanical hyperalgesia. While the initial approximately 30 min of this prolonged PGE2 hyperalgesia remains PKA-dependent, it subsequently switches to become dependent on protein kinase C epsilon (PKCε). In this study we tested the hypothesis that the delayed onset, PKCε-mediated, component of PGE2 hyperalgesia is generated by the active release of a nucleotide from the peripheral terminal of the primed nociceptor and this nucleotide is then metabolized to produce adenosine, which acts on a Gi-coupled A1 adenosine receptor on the nociceptor to generate PKCε-dependent hyperalgesia. We report that inhibitors of ATP-binding cassette transporters, of ecto-5'-phosphodiesterase and ecto-5'nucleotidase (enzymes involved in the metabolism of cyclic nucleotides to adenosine) and of A1 adenosine receptors each eliminated the late, but not the early, phase of PGE2 -induced hyperalgesia in primed animals. A second model of chronic pain induced by transient attenuation of G-protein-coupled receptor kinase 2, in which the prolongation of PGE2 hyperalgesia is not PKCε-dependent, was not attenuated by inhibitors of any of these mechanisms. Based on these results we propose a contribution of an autocrine mechanism, in the peripheral terminal of the nociceptor, in the hyperalgesic priming model of chronic pain.

DOI: 10.1111/ejn.12145

Cite this paper

@article{Ferrari2013RoleOA, title={Role of a novel nociceptor autocrine mechanism in chronic pain.}, author={Luiz Fernando Ferrari and Emma Levine and Jon D Levine}, journal={The European journal of neuroscience}, year={2013}, volume={37 10}, pages={1705-13} }