Robust unbounded attractors for differential equations in R^3

@inproceedings{Homburg2010RobustUA,
  title={Robust unbounded attractors for differential equations in R^3},
  author={Ale Jan Homburg and Bla{\vz} Mramor},
  year={2010}
}
  • Ale Jan Homburg, Blaž Mramor
  • Published 2010
  • Mathematics
  • Abstract We construct unbounded strange attractors for vector fields in R 3 that are robust transitive under uniformly small perturbations. Their geometry is reminiscent of geometric Lorenz and other singular hyperbolic attractors, but they contain no equilibria. 

    Create an AI-powered research feed to stay up to date with new papers like this posted to ArXiv

    Figures from this paper.

    References

    Publications referenced by this paper.
    SHOWING 1-10 OF 20 REFERENCES

    Pujals . Singular hyperbolic systems

    • M. J. Paćıfico, R. E.
    • Proc . Amer . Math . Soc .
    • 2009

    and M

    • V. Araújo, M. J. Paćıfico, E. R. Pujals
    • Viana. Singular-hyperbolic attractors are chaotic
    • 2007
    VIEW 1 EXCERPT

    Qualitative theory of planar differential systems

    • F. Dumortier, J. Llibre, J. C. Artés
    • Universitext. Springer-Verlag, Berlin
    • 2006
    VIEW 1 EXCERPT

    L

    • C. Bonatti
    • J. Dı́az, and M. Viana. Dynamics beyond uniform hyperbolicity, volume 102 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin
    • 2005

    Resonant heteroclinic cycles and Lorenz type attractors in models for skewed varicose instability

    • H. K. Nguyen, A. J. Homburg
    • Nonlinearity, 18:155 – 173
    • 2005
    VIEW 1 EXCERPT

    The existence of a smooth invariant foliation for Lorentztype maps

    • M. V. Shashkov, L. P. Shilnikov
    • Differ. Equations, 30(4):536–544
    • 1994
    VIEW 1 EXCERPT