Robust cascaded canceller using projection statistics for adaptive radar

@article{Picciolo2005RobustCC,
  title={Robust cascaded canceller using projection statistics for adaptive radar},
  author={Michael. J. Picciolo and G. N. Schoenig and Karrie Linn Gerlach and Lamine Mili},
  journal={2005 IEEE Aerospace Conference},
  year={2005},
  pages={2205-2211}
}
Adaptive radar requires independent and identically distributed (i.i.d.) training data, or snapshots, in order to obtain fast SINR convergence performance in the presence of correlated interference such as jamming and/or clutter returns. Targets, clutter discretes, and impulsive jamming are examples of non i.i.d., real-world data components that corrupt interference training data. Such data are considered to be statistical outliers. Recent outlier detection work for space time adaptive… CONTINUE READING

References

Publications referenced by this paper.
Showing 1-9 of 9 references

Median Cascaded Canceller Using Reiterative Processing

  • M. L. Picciolo, K. Gerlach
  • Proceedings of IEEE Radar Conference,
  • 2003
1 Excerpt

Fast Converging Robust Adaptive Arrays

  • M. L. Picciolo, K. Gerlach
  • Proceedings IEEE Radar Conference,
  • 2001
1 Excerpt

Robust state estimation based on projection statistics

  • L. Mili, M. Cheniae, N. Vichare, P. Rousseeuw
  • IEEE Trans. on Power Systems,
  • 1996
2 Excerpts

Convergence Properties of Gram-Schmidt and SMI Adaptive Algorithms, Part II

  • K. Gerlach, F. F. Kretschmer, Jr.
  • IEEE Trans. Aerospace and Electronic Systems,
  • 1991
1 Excerpt

Convergence Properties of Gram-Schmidt and SMI Adaptive Algorithms

  • K. Gerlach, F. F. Kretschmer, Jr.
  • IEEE Trans. Aerospace and Electronic Systems,
  • 1990
1 Excerpt

Influential Observation in Data Analysis

  • M. Gasko, D. Donoho
  • American Statistical Association, Proceedings of…
  • 1982
1 Excerpt