Riesz transforms on connected sums

@inproceedings{Carron2006RieszTO,
  title={Riesz transforms on connected sums},
  author={Gilles Carron},
  year={2006}
}
— Assume that M0 is a complete Riemannian manifold with Ricci curvature bounded from below and that M0 satisfies a Sobolev inequality of dimension ν > 3. Let M be a complete Riemannian manifold isometric at infinity to M0 and let p ∈ (ν/(ν − 1), ν). The boundedness of the Riesz transform of L(M0) then implies the boundedness of the Riesz transform of Lp(M) Résumé. — Soit M0 une variété riemannienne complète à courbure de Ricci bornée inférieurement et qui vérifie l’inégalité Sobolev de… CONTINUE READING

From This Paper

Topics from this paper.
3 Citations
20 References
Similar Papers

References

Publications referenced by this paper.
Showing 1-10 of 20 references

Stability results for Harnack inequalities

  • A. Grigor’yan, L. Saloff-Coste
  • Ann . Inst . Fourier
  • 2005

Estimations inférieures du noyau de la chaleur sur les variétés coniques et transformée de Riesz

  • T. T.Coulhon, Q. LiH.
  • Archiv der Mathematik
  • 2004

Riesz transform and related inequalities on non - compact Riemannian manifolds ,

  • X. T. Duong
  • Comm . in Pure and Appl . Math .
  • 2003

Heat kernel on connected sums of Riemannian manifolds

  • A. Grigor’yan, L. Saloff-Coste
  • Math . Res . Lett .
  • 1999

La transformation de Riesz sur les variétés coniques

  • H.-Q. Li
  • J. Funct. Anal
  • 1999
1 Excerpt

Riesz transforms for 1 6 p 6 2

  • T. Coulhon, X. T. Duong
  • Trans. Amer. Math. Soc
  • 1999
2 Excerpts

Riesz transforms for 1 ≤ p ≤ 2

  • T. Coulhon, X. T. Duong
  • Trans . Amer . Math . Soc .
  • 1999

Une suite exacte en L2-cohomologie

  • G. Carron
  • Duke Math. J
  • 1998
1 Excerpt

Optimal Sobolev inequalities on complete Riemannian manifolds with Ricci curvature bounded below and positive injectivity radius

  • E. Hebey
  • Amer. J. Math
  • 1996
1 Excerpt

Similar Papers

Loading similar papers…