Riemann-roch for singular varieties

@article{Baum1975RiemannrochFS,
  title={Riemann-roch for singular varieties},
  author={P. Baum and W. Fulton and R. Macpherson},
  journal={Publications Math{\'e}matiques de l'Institut des Hautes {\'E}tudes Scientifiques},
  year={1975},
  volume={45},
  pages={101-145}
}
The basic tool for a general Riemann-Roch theorem is MacPherson’s graph construction, applied to a complex E. of vector bundles on a scheme Y, exact off a closed subset X. This produces a localized Chern character1 ch x y (E.) which lives in the bivariant group \( A{\left( {X \to Y} \right)_\mathbb{Q}} \) For each class α∈A * Y, this gives a class $$ ch_X^Y\left( {E.} \right) \cap \alpha \in {A_ * }{X_\mathbb{Q}} $$ whose image in \( {A_ * }{Y_\mathbb{Q}} \) is \( {\sum {\left( { - 1… Expand
251 Citations
On analytic Todd classes of singular varieties
  • 1
  • PDF
An Analytic Grothendieck Riemann Roch Theorem
  • 22
  • PDF
Motivic Bivariant Characteristic Classes
  • 7
  • PDF
Noether–Lefschetz theory with base locus
  • 12
  • PDF
Numerical polar calculus and cohomology of line bundles
  • 1
  • PDF
Enriched categories of correspondences and characteristic classes of singular varieties
  • 1
  • PDF
Witten’s top Chern class on the moduli space of higher spin curves
  • 42
  • Highly Influenced
  • PDF
An Extension of Deligne-Grothendieck-MacPherson's Theory C * of Chern Classes for Singular Algebraic Varieties
  • 4
  • Highly Influenced
...
1
2
3
4
5
...

References

SHOWING 1-10 OF 11 REFERENCES
Analytic cycles on complex manifolds
  • 180
  • PDF
Flat modules in algebraic geometry
  • 54
  • PDF
Le théorème de Riemann-Roch
  • 216
  • PDF
La théorie des classes de Chern
  • 259
  • PDF
Th'eorie des intersections et th'eor`eme de Riemann-Roch
  • 365
225 (1971)
  • Brown University, Providence, R.I. Manuscrit refu Ie 20 aout
  • 1974
Chern Classes for Singular Algebraic Varieties
  • 458
MACPHERSON, Chem classes of singular varieties
  • Ann. of Math,
  • 1974
Riemann-Roch for singular varieties
  • Algebraic Geometry, Arcata
  • 1974
...
1
2
...