Riemann-roch for Equivariant Chow Groups

  title={Riemann-roch for Equivariant Chow Groups},
  author={Dan Edidin and William C. Graham},
Here ĜG(X) is the completion alon the augmentation ideal of the representation ring R(G), and he groups CH i G(X) are the equivariant Chow groups defined in [EG2]. The map τ has the same functorial properties as the non-equivariant Riemann-Roch map of [BFM], [Fu, Theorem 18.3] and if G acts freely then τ can be identified with the non-equivariant Todd class map τX/G : G(X/G) → CH (X/G)Q. The key to proving this isomorphism is a geometric description of completions of the equivariant… CONTINUE READING
Highly Cited
This paper has 25 citations. REVIEW CITATIONS

From This Paper

Topics from this paper.


Publications referenced by this paper.
Showing 1-10 of 15 references

The Grothendieck Riemann-Roch theorem in the higher K-theory of group scheme actions, Ann

  • B. Köck
  • Sci. École Norm. Sup. (4)
  • 1998

Equivariant Chow groups for torus actions, Transform

  • M. Brion
  • Groups
  • 1997

Riemann-Roch type theorems for arithmetic schemes with a finite group action

  • T. Chinburg, B. Erez, G. Pappas, M. J. Taylor
  • J. Reine Angew. Math
  • 1997

Equivariant Grothendieck groups and equivariant Chow groups in Classification of irregular varieties (Trento

  • A. Vistoli
  • Lecture Notes in Math.,
  • 1990

Equivariant algebraic vs. topological K-theory

  • R. Thomason
  • Duke Math. J.,
  • 1988

Algebraic K-theory of group scheme actions, in Algebraic topology and algebraic K-theory (W

  • R. Thomason
  • Browder editor), Annals of Math Studies
  • 1987

Equivariant and topological K-theory

  • R. Thomason
  • Duke Math. Journal,
  • 1986

Lefschetz-Riemann-Roch theorem and coherent trace formula

  • R. Thomason
  • Inv. Math
  • 1986

Intersection theory on algebraic stacks and Q-varieties

  • H. Gillet
  • J. Pure Appl. Algebra,
  • 1984

Similar Papers

Loading similar papers…