Resolutions by Polygraphs

@inproceedings{Mtayer2003ResolutionsBP,
  title={Resolutions by Polygraphs},
  author={François M{\'e}tayer},
  year={2003}
}
A notion of resolution for higher-dimensional categories is defined, by using polygraphs, and basic invariance theorems are proved. 
Highly Cited
This paper has 23 citations. REVIEW CITATIONS

From This Paper

Figures, tables, and topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 17 references

Higher-Dimensional Word Problems with Applications to Equational Logic

Theor. Comput. Sci. • 1993
View 3 Excerpts
Highly Influenced

Présentations des ∞-catégories

A. Burroni
application: les orientaux simpliciaux et cubiques. manuscript • 2001
View 1 Excerpt

Geometry and concurrency: a user's guide

Mathematical Structures in Computer Science • 2000
View 1 Excerpt

Approche polygraphique des ∞-catégories non strictes

J. Penon
Cahiers de Topologie et Géométrie Différentielle Catégoriques, 40:31–80 • 1999
View 1 Excerpt

On Combinatorial Models for Higher Dimensional Homotopies

S. Crans
PhD thesis, Universiteit Utrecht • 1995
View 1 Excerpt

Une construction d’un nerf des ∞-catégories

A. Burroni, J. Penon
Catégories, Algèbres, Esquisses et Néo-Esquisses, pages 45–55. Université de Caen • 1994
View 2 Excerpts

Similar Papers

Loading similar papers…