Representations of max-stable processes based on single extreme events
@article{Engelke2012RepresentationsOM, title={Representations of max-stable processes based on single extreme events}, author={Sebastian Engelke and Alexander Malinowski and Marco Oesting and Martin Schlather}, journal={arXiv: Probability}, year={2012} }
This paper provides the basis for new methods of inference for max-stable processes \xi\ on general spaces that admit a certain incremental representation, which, in important cases, has a much simpler structure than the max-stable process itself. A corresponding peaks-over-threshold approach will incorporate all single events that are extreme in some sense and will therefore rely on a substantially larger amount of data in comparison to estimation procedures based on block maxima. Conditioning…
8 Citations
Characterization and construction of max-stable processes
- Mathematics
- 2013
Max-stable processes provide a natural framework to model spatial extremal scenarios. Appropriate summary statistics include the extremal coefficients and the (upper) tail dependence coefficients. In…
Brown-Resnick Processes: Analysis, Inference and Generalizations
- Mathematics
- 2013
This thesis deals with the analysis, inference and further generalizations of
a rich and flexible class of max-stable random fields, the so-called
Brown-Resnick processes. The first chapter gives…
Estimation of Hüsler–Reiss distributions and Brown–Resnick processes
- Mathematics
- 2012
Estimation of extreme value parameters from observations in the max‐domain of attraction of a multivariate max‐stable distribution commonly uses aggregated data such as block maxima. Multivariate…
Financial Models of Interaction Based on Marked Point Processes and Gaussian Fields
- Mathematics
- 2013
This thesis deals with interaction
phenomena in marked point processes, with particular attention
being paid to the extreme value theory framework and with
application to high-frequency financial…
On the Normalized Spectral Representation of Max-Stable Processes on a Compact Set
- Mathematics
- 2013
M. OestingM. SchlatherInstitut fu¨r MathematikUniversita¨t MannheimA 5, 668161 MannheimGermanye-mail: oesting@uni-mannheim.deschlather@uni-mannheim.deC. ZhouErasmus School of EconomicsErasmus…
EXTREMES OF PERTURBED BIVARIATE RAYLEIGH RISKS
- Mathematics
- 2014
• We establish first an asymptotic expansion for the joint survival function of a bivariate Rayleigh distribution, one of the most popular probabilistic models in engineering. Furthermore, we show…
Systematic co-occurrence of tail correlation functions among max-stable processes
- Mathematics
- 2014
The tail correlation function (TCF) is one of the most popular bivariate extremal dependence measures that has entered the literature under various names. We study to what extent the TCF can…
Texture Zeros for Dirac Neutrinos and Current Experimental Tests
- Physics
- 2013
The Daya Bay and RENO reactor neutrino experiments have revealed that the smallest neutrino mixing angle is in fact relatively large, i.e. θ13 ≈9°. Motivated by this exciting progress, we perform a…
References
SHOWING 1-10 OF 29 REFERENCES
MAX-STABLE PROCESSES AND SPATIAL EXTREMES
- Mathematics
- 2005
Max-stable processes arise from an infinite-dimensional generalisation of extreme value theory. They form a natural class of processes when sample maxima are observed at each site of a spatial…
On the structure and representations of max-stable processes
- MathematicsAdvances in Applied Probability
- 2010
We develop classification results for max-stable processes, based on their spectral representations. The structure of max-linear isometries and minimal spectral representations play important roles.…
Likelihood-Based Inference for Max-Stable Processes
- Mathematics
- 2009
The last decade has seen max-stable processes emerge as a common tool for the statistical modeling of spatial extremes. However, their application is complicated due to the unavailability of the…
Estimation of Hüsler–Reiss distributions and Brown–Resnick processes
- Mathematics
- 2012
Estimation of extreme value parameters from observations in the max‐domain of attraction of a multivariate max‐stable distribution commonly uses aggregated data such as block maxima. Multivariate…
Simulation of Brown–Resnick processes
- Mathematics
- 2012
Brown–Resnick processes form a flexible class of stationary max-stable processes based on Gaussian random fields. With regard to applications, fast and accurate simulation of these processes is an…
Spatial extremes: Models for the stationary case
- Mathematics
- 2006
The aim of this paper is to provide models for spatial extremes in the case of stationarity. The spatial dependence at extreme levels of a stationary process is modeled using an extension of the…
Stationary max-stable fields associated to negative definite functions.
- Mathematics
- 2009
Let Wi, i∈ℕ, be independent copies of a zero-mean Gaussian process {W(t), t∈ℝd} with stationary increments and variance σ2(t). Independently of Wi, let ∑i=1∞δUi be a Poisson point process on the real…
Multivariate Generalized Pareto Distributions
- Mathematics
- 2006
Statistical inference for extremes has been a subject of intensive research over the past couple of decades. One approach is based on modelling exceedances of a random variable over a high threshold…
A dependence measure for multivariate and spatial extreme values: Properties and inference
- Mathematics
- 2003
We present properties of a dependence measure that arises in the study of extreme values in multivariate and spatial problems. For multivariate problems the dependence measure characterises…