Remarks on the Lifespan of the Solutions to Some Models of Incompressible Fluid Mechanics

@inproceedings{Danchin2012RemarksOT,
  title={Remarks on the Lifespan of the Solutions to Some Models of Incompressible Fluid Mechanics},
  author={Rapha{\"e}l Danchin},
  year={2012}
}
We give lower bounds for the lifespan of a solution to the inviscid Boussinesq system. In dimension two, we point out that it tends to infinity when the initial (relative) temperature tends to zero. This is, to the best of our knowledge, the first result of this kind for the inviscid Boussinesq system. In passing, we provide continuation criteria (of independent interest) in the N -dimensional case. In the second part of the paper, our method is adapted to handle the axisymmetric incompressible… CONTINUE READING

References

Publications referenced by this paper.
Showing 1-10 of 29 references

Shu: Small-scale structures in Boussinesq convection

E W., C.-W
Physic of Fluids, • 1994
View 4 Excerpts
Highly Influenced

Precise regularity results for the Euler equations

A. Dutrifoy
Journal of Mathematical Analysis and Applications, • 2003
View 3 Excerpts
Highly Influenced

Dutrifoy : Precise regularity results for the Euler equations

A.
Journal de Mathématiques Pures et Appliquées • 2011

Fourier Analysis and Nonlinear Partial Differential Equations

H. Bahouri, J.-Y. Chemin, R. Danchin
Grundlehren der mathematischen Wissenschaften, • 2011

The well-posedness issue for the density-dependent Euler equations in endpoint Besov spaces

R. Danchin, F. Fanelli
Journal de Mathématiques Pures et Appliquées, • 2011
View 1 Excerpt

Local well-posedness and blow-up criterion of the Boussinesq equations in critical Besov spaces

X. Liu, M. Wang, Z. Zhang
Journal of Mathematical Fluid Mechanics, • 2010
View 3 Excerpts

Jellouli : Equation d ’ Euler sur un domaine extérieur . Existence locale et apparition de singularités

M.
Osaka Journal of Mathematics • 2009

Keraani: Incompressible viscous flows in borderline Besov spaces, Archive for Rational Mechanics and Analysis

S. T. Hmidi
2009
View 1 Excerpt

Axisymmetric incompressible flows with bounded vorticity

R. Danchin
Russian Mathematical Surveys, • 2007
View 1 Excerpt

Similar Papers

Loading similar papers…