Remark on Koide's Z 3 -symmetric parametrization of quark masses

@article{enczykowski2012RemarkOK,
  title={Remark on Koide's Z 3 -symmetric parametrization of quark masses},
  author={Piotr Żenczykowski},
  journal={Physical Review D},
  year={2012},
  volume={86},
  pages={117303}
}
The charged lepton masses may be parametrized in a Z3-symmetric language appropriate to the discussions of Koide's formula. The phase parameter \delta_L appearing in this parametrization is experimentally indistinguishable from 2/9. We analyse Koide's parametrization for the up (U) and down (D) quarks and argue that the data are suggestive of the low-energy values \delta_U=\delta_L/3=2/27 and \delta_D=2\delta_L/3=4/27. 

Figures from this paper

A Note on Koide’s Doubly Special Parametrization of Quark Masses
Abstract Three charged lepton masses may be expressed in terms of a Z3-symmetric parametrization relevant for the discussion of Koide’s formula. After disregarding the overall scale parameter, the
Density Matrices and the Standard Model
We use density matrices to explore the possibility that the various flavors of quarks and leptons are linear superpositions over a single particle whose symmetry follows the finite subgroup $S_4$ of
Explorations of two empirical formulas for fermion masses
Two empirical formulas for the lepton and quark masses (i.e. Kartavtsev’s extended Koide formulas), $$K_l=(\sum _l m_l)/(\sum _l\sqrt{m_l})^2=2/3$$Kl=(∑lml)/(∑lml)2=2/3 and $$K_q=(\sum _q m_q)/(\sum
Group Geometric Algebras and the Standard Model
We show how to generalize the Weyl equation to include the Standard Model fermions and a dark matter fermion. The 2x2 complex matrices are a matrix ring R. A finite group G can be used to define a
Group Geometric Algebra and the Standard Model
We show how to generalize the Weyl equation to include the Standard Model fermions and a dark matter fermion. The 2 × 2 complex matrices are a matrix ring R. A finite group G can be used to define a

References

SHOWING 1-9 OF 9 REFERENCES
A Remark on the Koide relation for quarks
The charged lepton masses obey to high precision the so-called Koide relation. We propose a generalization of this relation to quarks. It includes up and down quarks of the three generations and is
Lett
  • Nuovo Cim. 34 (1982) 201; Phys. Lett. B120 (1983) 161; Phys. Rev. D28
  • 1983
Phys
  • Rev. D73
  • 2006
Mod
  • Phys. Lett. A22
  • 2007
Phys
  • Rev. D73
  • 2006
Phys
  • Lett. B635
  • 2006
hep-ph/0005137 (unpublished); J
  • Phys. G34
  • 2007
Phys
  • Lett. B698
  • 2011
Particle Data Group)
  • Phys. Rev
  • 2012