Release of guanyl nucleotides from the regulatory subunit of adenylate cyclase.

  • D L Burns, J Moss, M Vaughan
  • Published 1983 in The Journal of biological chemistry

Abstract

Choleragen and beta-adrenergic agonists, both of which activate turkey erythrocyte adenylate cyclase, have been reported to accelerate release of bound [3H]guanyl nucleotides from turkey erythrocyte membranes. We have now obtained evidence that choleragen- or isoproterenol-stimulated release reflects a change in the affinity of the regulatory subunit (G/F) of adenylate cyclase for guanyl nucleotides. Solubilized preparations of turkey erythrocytes that had bound radiolabeled GTP were chromatographed on Ultrogel AcA 34. The protein from which guanyl nucleotide was released upon incubation with choleragen or isoproterenol was co-eluted with G/F activity. Furthermore, this protein appears to be the same size as the complex containing the 42,000-dalton peptide, ADP*-ribosylated by choleragen, which is presumably a subunit of G/F. ADP ribosylation of the 42,000-dalton subunit of G/F by choleragen occurred with a half-time of about 5 min, whereas choleragen-stimulated release of guanyl nucleotides was much slower (t1/2 greater than or equal to 60 min). When membranes were treated with choleragen and NAD, the delay in activation of adenylate cyclase by guanylyl imidodiphosphate was decreased but not abolished, a finding consistent with the idea that release of endogenously bound nucleotide (and subsequent binding of the nonhydrolyzable GTP analog) occurs only slowly following ADP ribosylation. In contrast, activation of the adenylate cyclase of either toxin-treated or untreated membranes in the presence of isoproterenol and guanylyl imidodiphosphate was very rapid. These data support the hypothesis that isoproterenol and choleragen may activate adenylate cyclase, at least in part, by increasing the rate of release of guanyl nucleotides from G/F.

Cite this paper

@article{Burns1983ReleaseOG, title={Release of guanyl nucleotides from the regulatory subunit of adenylate cyclase.}, author={D L Burns and J Moss and M Vaughan}, journal={The Journal of biological chemistry}, year={1983}, volume={258 2}, pages={1116-20} }