# Relativizing characterizations of Anosov subgroups, I

@article{Kapovich2018RelativizingCO, title={Relativizing characterizations of Anosov subgroups, I}, author={Michael Kapovich and Bernhard Leeb}, journal={arXiv: Group Theory}, year={2018} }

Author(s): Kapovich, Michael; Leeb, Bernhard | Abstract: We propose several common extensions of the classes of Anosov subgroups and geometrically finite Kleinian groups among discrete subgroups of semisimple Lie groups. We relativize various dynamical and coarse geometric characterizations of Anosov subgroups given in our earlier work, extending the class from intrinsically hyperbolic to relatively hyperbolic subgroups. We prove implications and equivalences between the various relativizations…

## 18 Citations

Patterson-Sullivan theory for Anosov subgroups

- Mathematics
- 2019

Author(s): Dey, Subhadip; Kapovich, Michael | Abstract: We extend several notions and results from the classical Patterson-Sullivan theory to the setting of Anosov subgroups of higher rank semisimple…

Anosov representations, strongly convex cocompact groups and weak eigenvalue gaps

- Mathematics
- 2020

We provide characterizations of Anosov representations of word hyperbolic groups into real semisimple Lie groups in terms of equivariant limit maps, the Cartan property and the uniform gap summation…

Entropy rigidity for cusped Hitchin representations

- Mathematics
- 2022

We establish an entropy rigidity theorem for Hitchin representations of all geometrically finite Fuchsian groups which generalizes a theorem of Potrie and Sambarino for Hitchin representations of…

Relatively dominated representations

- MathematicsAnnales de l'Institut Fourier
- 2021

Anosov representations give a higher-rank analogue of convex cocompactness in a rank-one Lie group which shares many of its good geometric and dynamical properties; geometric finiteness in rank one…

Hitchin representations of Fuchsian groups

- Mathematics
- 2021

Nigel Hitchin [54] used the theory of Higgs bundles to exhibit a component of the “character variety” of (conjugacy classes of) representations of a closed surface group into PSL(d,R) which is…

Ergodicity and equidistribution in Hilbert geometry

- Mathematics
- 2020

In this paper we show that dynamical and counting results characteristic of negatively-curved Riemannian geometry, or more generally CAT(-1) or rank-one CAT(0) spaces, also hold for…

A cyclotomic family of thin hypergeometric monodromy groups in Sp4(R)

- Mathematics
- 2021

We exhibit an infinite family of discrete subgroups of Sp4(R) which have a number of remarkable properties. Our results are established by showing that each group plays pingpong on an appropriate set…

Anosov representations over closed subflows

- Mathematics, Computer Science
- 2021

This work introduces a generalization of the notion of Anosov representations by restricting to invariant closed geodesic subflows and proves several properties of this type of representations analogous to the classical Anosova representations.

Convex co-compact actions of relatively hyperbolic groups.

- Mathematics
- 2019

In this paper we consider discrete groups in ${\rm PGL}_d(\mathbb{R})$ acting convex co-compactly on a properly convex domain in real projective space. For such groups, we establish necessary and…

## References

SHOWING 1-10 OF 58 REFERENCES

Discrete isometry groups of symmetric spaces

- Mathematics
- 2017

Author(s): Kapovich, Michael; Leeb, Bernhard | Abstract: This survey is based on a series of lectures that we gave at MSRI in Spring 2015 and on a series of papers, mostly written jointly with Joan…

Anosov representations: domains of discontinuity and applications

- Mathematics
- 2012

The notion of Anosov representations has been introduced by Labourie in his study of the Hitchin component for SL(n,R). Subsequently, Anosov representations have been studied mainly for surface…

Arithmetic Properties of Discrete Subgroups

- Mathematics
- 1974

That the factor space of a semisimple Lie group by an arithmetic subgroup has finite volume with respect to Haar measure is well known. In this paper we study results related to the converse of this…

Géométrie et théorie des groupes: les groupes hyperboliques de Gromov

- Mathematics
- 1990

The book is an introduction of Gromov's theory of hyperbolic spaces and hyperbolic groups. It contains complete proofs of some basic theorems which are due to Gromov, and emphasizes some important…

Bounded geometry in relatively hyperbolic groups

- Mathematics
- 2004

If a group is relatively hyperbolic, the parabolic subgroups are virtually nilpotent if and only if there exists a hyperbolic space with bounded geometry on which it acts geometrically finitely. This…

Morse actions of discrete groups on symmetric space

- Mathematics
- 2014

We study the geometry and dynamics of discrete infinite covolume subgroups of
higher rank semisimple Lie groups. We introduce and prove the equivalence of several
conditions, capturing "rank one…

Geometrical Finiteness for Hyperbolic Groups

- Mathematics
- 1993

Abstract In this paper, we give an account of the notion of geometrical finiteness as applied to discrete groups acting on hyperbolic space of any dimension. We prove the equivalence of various…

A characterization of irreducible symmetric spaces and Euclidean buildings of higher rank by their asymptotic geometry

- Mathematics
- 2009

We study geodesically complete and locally compact Hadamard spaces X whose Tits boundary is a connected irreducible spherical building. We show that X is symmetric iff complete geodesics in X do not…

Finsler bordifications of symmetric and certain locally symmetric spaces

- MathematicsGeometry & Topology
- 2018

We give a geometric interpretation of the maximal Satake compactification of symmetric spaces $X=G/K$ of noncompact type, showing that it arises by attaching the horofunction boundary for a suitable…