Relating the Farrell Nil-groups to the Waldhausen Nil-groups

@inproceedings{Lafont2006RelatingTF,
  title={Relating the Farrell Nil-groups to the Waldhausen Nil-groups},
  author={J. Lafont and Ivonne J. Ortiz},
  year={2006}
}
Every virtually cyclic group G that surjects onto the infinite dihedral group Dy contains an index two subgroup P of the form Hza Z. We show that the Waldhausen Nil-group of G vanishes if and only if the Farrell Nil-group of P vanishes. 2000 Mathematics Subject Classification: 19D35. 1 Statement of results The Bass Nil-groups, Farrell Nil-groups, and Waldhausen Nil-groups appear respectively as pieces in the computation of the algebraic K-theory of direct products, semidirect products, and… CONTINUE READING

References

Publications referenced by this paper.
Showing 1-10 of 24 references

Non finiteness of twisted Nils

  • R. Ramos
  • 2006

Non-finiteness results for Nil-groups

  • J. Grunewald
  • 2006

On classifying spaces for the family of virtually cyclic subgroups; to appear in Recent Developments in Algebraic Topology (Contemp

  • D. JL Juan-Pineda, I J.Leary
  • Math. 407)
  • 2006

Survey on classifying spaces for families of subgroups

  • F. LafontJ., J. OrtizI., W. Lück
  • Infinite groups : geometric , combinatorial and…
  • 2005

Survey on classifying spaces for families of subgroups. In: Infinite groups: geometric, combinatorial and dynamical aspects (Progr

  • W. Lück
  • 2005

On the exponent of the cokernel of the forget - control map on K 0 - groups

  • X. ConnollyF., S. Prassidis
  • Fund . Math .
  • 2003

A split exact sequence of equivariant K - groups of virtually nilpotent groups

  • S. Prassidis
  • 1997

Similar Papers

Loading similar papers…