Regulation of p53 nuclear export through sequential changes in conformation and ubiquitination.


Wild-type p53 is a conformationally labile protein that undergoes nuclear-cytoplasmic shuttling. MDM2-mediated ubiquitination promotes p53 nuclear export by exposing or activating a nuclear export signal (NES) in the C terminus of p53. We observed that cancer-derived p53s with a mutant (primary antibody 1620-/pAb240+) conformation localized in the cytoplasm to a greater extent and displayed increased susceptibility to ubiquitination than p53s with a more wild-type (primary antibody 1620+/pAb240-) conformation. The cytoplasmic localization of mutant p53s required the C-terminal NES and an intact ubiquitination pathway. Mutant p53 ubiquitination occurred at lysines in both the DNA-binding domain (DBD) and C terminus. Interestingly, Lys to Arg mutations that inhibited ubiquitination restored nuclear localization to mutant p53 but had no apparent effect on p53 conformation. Further studies revealed that wild-type p53, like mutant p53, is ubiquitinated by MDM2 in both the DBD and C terminus and that ubiquitination in both regions contributes to its nuclear export. MDM2 binding can induce a conformational change in wild-type p53, but this conformational change is insufficient to promote p53 nuclear export in the absence of MDM2 ubiquitination activity. Taken together, these results support a stepwise model for mutant and wild-type p53 nuclear export. In this model, the conformational change induced by either the cancer-derived mutation or MDM2 binding precedes p53 ubiquitination. The addition of ubiquitin to DBD and C-terminal lysines then promotes nuclear export via the C-terminal NES.

Citations per Year

645 Citations

Semantic Scholar estimates that this publication has 645 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Nie2007RegulationOP, title={Regulation of p53 nuclear export through sequential changes in conformation and ubiquitination.}, author={Linghu Nie and Mark M. Sasaki and Carl G. Maki}, journal={The Journal of biological chemistry}, year={2007}, volume={282 19}, pages={14616-25} }