Regularity of Optimal Shapes for the Dirichlet ’ S Energy with Volume Constraint ∗

@inproceedings{BrianconRegularityOO,
  title={Regularity of Optimal Shapes for the Dirichlet ’ S Energy with Volume Constraint ∗},
  author={Tanguy Briancon}
}
  • Tanguy Briancon
In this paper, we prove some regularity results for the boundary of an open subset of R which minimizes the Dirichlet’s energy among all open subsets with prescribed volume. In particular we show that, when the volume constraint is “saturated”, the reduced boundary of the optimal shape (and even the whole boundary in dimension 2) is regular if the state function is nonnegative. Mathematics Subject Classification. 35R35, 49N60, 49Q10. Received 25 February 2003. Revised 4 August 2003… CONTINUE READING

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 14 references

Variational approach of a magnetic shaping problem

  • M. Crouzeix
  • Eur. J. Mech. 10
  • 1991
Highly Influential
5 Excerpts

Existence and geometric properties of solutions of a free boundary problem in potential theory

  • B. Gustafsson, H. Shahgholian
  • J. Reine Angew. Math. 473
  • 1996
Highly Influential
10 Excerpts

Measure theory and fine properties of functions

  • L. C. Evans, R. F. Gariepy
  • CRC Press
  • 1992
Highly Influential
5 Excerpts

Existence and regularity for a minimum problem with free boundary

  • H. W. Alt, L. A. Caffarelli
  • J. Reine Angew. Math. 325
  • 1981
Highly Influential
10 Excerpts

Problèmes de régularité en optimisation de formes

  • T. Briancon
  • Ph.D. thesis, université Rennes 1
  • 2002
2 Excerpts

Lipschitz continuity of the state function in a shape optimization problem

  • M. Hayouni
  • J. Convex Anal. 6
  • 1999
1 Excerpt

Existence et régularité pour des problèmes d’optimisation de formes

  • M. Hayouni
  • Ph.D. thesis, université Henri Poincaré Nancy 1
  • 1997
2 Excerpts

Similar Papers

Loading similar papers…