• Corpus ID: 238743876

Regular projections and regular covers in o-minimal structures

@inproceedings{Oudrane2021RegularPA,
  title={Regular projections and regular covers in o-minimal structures},
  author={M'hammed Oudrane},
  year={2021}
}
In this paper we prove that for any definable subset $X\subset \mathbb{R}^{n}$ in a polynomially bounded o-minimal structure, with $dim(X)<n$, there is a finite set of regular projections (in the sense of Mostowski ). We give also a weak version of this theorem in any o-minimal structure, and we give a counter example in o-minimal structures that are not polynomially bounded. As an application we show that in any o-minimal structure there exist a regular cover in the sense of Parusi\'nski. 

References

SHOWING 1-10 OF 18 REFERENCES
AN INTRODUCTION TO O-MINIMAL GEOMETRY
Preface These notes have served as a basis for a course in Pisa in Spring 1999. A parallel course on the construction of o-minimal structures was given by A. Macintyre. The content of these notes
Regular subanalytic covers
  • Astérisque
  • 2016
Sobolev spaces and Sobolev sheaves
Construction of sheaves on the subanalytic site
On a real analytic manifold M, we construct the linear subanalytic Grothendieck topology Msal together with the natural morphism of sites $\rho$ from Msa to Msal, where Msa is the usual subanalytic
Tame Topology and O-Minimal Structures
TLDR
My goal is to give everyone a sense of the subject of o-minimality, and the literature on this topic has grown vast, so I will ignore a lot of things in order to get at issues relevant for this audience.
Transversality theorem in o-minimal structures
  • T. L. Loi
  • Mathematics
    Compositio Mathematica
  • 2008
Abstract In this paper we present Thom’s transversality theorem in o-minimal structures (a generalization of semialgebraic and subanalytic geometry). There are no restrictions on the
Verdier Stratifications and Thom Stratifications in O-minimal structures. Illinois
  • J.Math
  • 1998
Verdier Stratifications and ( w f )-Stratifications in o-minimal Structures
– We prove the existence of Verdier stratifications for sets definable in any o-minimal structure on (R, +, ·). It is also shown that the Verdier condition (w) implies the Whitney condition (b) in
Expansions of the Real Field with Power Functions
  • Chris Miller
  • Mathematics, Computer Science
    Ann. Pure Appl. Log.
  • 1994
...
1
2
...