Reflection quasilattices and the maximal quasilattice
@article{Boyle2016ReflectionQA, title={Reflection quasilattices and the maximal quasilattice}, author={Latham A. Boyle and Paul J. Steinhardt}, journal={Physical Review B}, year={2016}, volume={94}, pages={064107} }
We introduce the concept of a {\it reflection quasilattice}, the quasiperiodic generalization of a Bravais lattice with irreducible reflection symmetry. Among their applications, reflection quasilattices are the reciprocal (i.e. Bragg diffraction) lattices for quasicrystals and quasicrystal tilings, such as Penrose tilings, with irreducible reflection symmetry and discrete scale invariance. In a follow-up paper, we will show that reflection quasilattices can be used to generate tilings in real…
Tables from this paper
2 Citations
Self-Similar One-Dimensional Quasilattices
- Mathematics
- 2016
We study 1D quasilattices, especially self-similar ones that can be used to generate two-, three- and higher-dimensional quasicrystalline tesselations that have matching rules and invertible…
Coxeter Pairs, Ammann Patterns and Penrose-like Tilings
- Mathematics
- 2016
We identify a precise geometric relationship between: (i) certain natural pairs of irreducible reflection groups ("Coxeter pairs"); (ii) self-similar quasicrystalline patterns formed by superposing…
References
SHOWING 1-10 OF 39 REFERENCES
Self-Similar One-Dimensional Quasilattices
- Mathematics
- 2016
We study 1D quasilattices, especially self-similar ones that can be used to generate two-, three- and higher-dimensional quasicrystalline tesselations that have matching rules and invertible…
The E8 lattice and quasicrystals: geometry, number theory and quasicrystals
- Physics
- 1993
The authors study the quasiperiodic structures which can be derived from E8. This lattice, suitably oriented, leads to a 4D quasicrystal which has (3,3,5) symmetry. They develop a modified version of…
Simple octagonal and dodecagonal quasicrystals.
- PhysicsPhysical review. B, Condensed matter
- 1989
Penrose tilings have become the canonical model for quasicrystal structure, primarily because of their simplicity in comparison with other decagonally symmetric quasiperiodic tilings of the plane.…
Quasicrystals: a new class of ordered structures
- Physics
- 1984
A quasicrystal is the natural extension of the notion of a crystal to structures with quasiperiodic, rather than periodic, translational order. We classify two- and three-dimensional quasicrystals by…
The space groups of icosahedral quasicrystals and cubic, orthorhombic, monoclinic, and triclinic crystals
- Geology
- 1992
In 1962 Bienenstock and Ewald described a simple and systematic method for computing all the crystallographic space groups in Fourier space. Their approach is reformulated and further simplified,…
Coxeter Pairs, Ammann Patterns and Penrose-like Tilings
- Mathematics
- 2016
We identify a precise geometric relationship between: (i) certain natural pairs of irreducible reflection groups ("Coxeter pairs"); (ii) self-similar quasicrystalline patterns formed by superposing…
A Guide to Mathematical Quasicrystals
- Mathematics
- 2002
This contribution deals with mathematical and physical properties of discrete structures such as point sets and tilings. The emphasis is on proper generalizations of concepts and ideas from classical…
A Highly Symmetric Four-Dimensional Quasicrystal *
- Physics
- 1987
A quasiperiodic pattern (or quasicrystal) is constructed in real four-dimensional Euclidean space, having the non-crystallographic reflection group (3, 3, 5) of order 14 400 as its point group. It is…
Quasicrystals and geometry
- Mathematics
- 1995
Preface 1. Past as prologue 2. Lattices, Voronoi cells, and quasicrystals 3. Introduction to diffraction geometry 4. Order on the line 5. Tiles and tilings 6. Penrose tilings of the plane 7. The…