Reconstruction of three-dimensional porous media using a single thin section.

@article{Tahmasebi2012ReconstructionOT,
  title={Reconstruction of three-dimensional porous media using a single thin section.},
  author={Pejman Tahmasebi and Muhammad Sahimi},
  journal={Physical review. E, Statistical, nonlinear, and soft matter physics},
  year={2012},
  volume={85 6 Pt 2},
  pages={
          066709
        }
}
  • Pejman Tahmasebi, Muhammad Sahimi
  • Published in
    Physical review. E…
    2012
  • Medicine, Physics
  • The purpose of any reconstruction method is to generate realizations of two- or multiphase disordered media that honor limited data for them, with the hope that the realizations provide accurate predictions for those properties of the media for which there are no data available, or their measurement is difficult. An important example of such stochastic systems is porous media for which the reconstruction technique must accurately represent their morphology--the connectivity and geometry--as… CONTINUE READING

    Citations

    Publications citing this paper.
    SHOWING 1-10 OF 39 CITATIONS

    3-D Reconstruction Method for Complex Pore Structures of Rocks Using a Small Number of 2-D X-Ray Computed Tomography Images

    VIEW 1 EXCERPT

    References

    Publications referenced by this paper.
    SHOWING 1-10 OF 50 REFERENCES

    Water Resour

    • P. H. Valvatn, M. J. Blunt
    • Res. 40, W07406
    • 2004
    VIEW 12 EXCERPTS
    HIGHLY INFLUENTIAL

    Rev

    • M. Sahimi
    • Mod. Phys. 65, 1393 (1993); Flow and Transport in Porous Media and Fractured Rock, 2nd ed. (Wiley-VCH, Weinheim, 2011); Heterogeneous Materials I & II
    • 2003
    VIEW 5 EXCERPTS
    HIGHLY INFLUENTIAL

    Phys

    • S. L. Bryant, M. J. Blunt
    • Rev. A 46, 2004 (1992); S. L. Bryant and S. Raikes, Geophysics 60, 437 (1995); S. L. Bryant, P. R. King, and D. W. Mellor, Transp. Porous Media 11, 53 (1993); S. L. Bryant, D. W. Mellor, and C. A. Cade, AIChE J. 39, 387
    • 1993
    VIEW 11 EXCERPTS
    HIGHLY INFLUENTIAL

    Math

    • S. Krishna, A. G. Journel
    • Geol. 35, 915
    • 2003
    VIEW 3 EXCERPTS
    HIGHLY INFLUENTIAL

    Comput

    • P. Tahmasebi, A. Hezarkhani, M. Sahimi
    • Geosci. 16, 779
    • 2012

    Int

    • P. M. Adler, C. G. Jacquin, J. A. Quiblier
    • J. Multiphase Flow 16, 691 (1990). 066709-12 RECONSTRUCTION OF THREE-DIMENSIONAL POROUS . . . PHYSICAL REVIEW E 85, 066709
    • 2012

    Adv

    • A. Hajizadeh, A. Safekordi, F. A. Farhadpour
    • Water Resour. 34, 1256
    • 2011

    Proc

    • Y. Jiao, F. H. Stillinger, S. Torquato
    • Natl. Acad. Sci. U.S.A. 106, 17634 (2009); C. E. Zachary and S. Torquato, Phys. Rev. E 84, 056102
    • 2011
    VIEW 1 EXCERPT

    Transp

    • P. Čapek, V. Hejtmánek, L. Brabec, A. Zikánová, M. Kočiřik
    • Porous Media 76, 179 (2009); P. Čapek, V. Hejtmánek, J. Kolafa, and L. Brabec, ibid. 88, 87
    • 2011

    in Geostatistics

    • C. Daly
    • edited by O. Leuangthong and C. V. Deutsch (Springer, New York, 2004), p. 215; A. El Ouassini, A. Saucier, D. Marcotte, and B. Favis, Chaos Solitons Fractals 36, 418 (2008); G. Mariethoz, P. Renard, and J. Straubhaar, Water Resour. Res. 46, W11536
    • 2010
    VIEW 1 EXCERPT