Reconstruction of Radial Dirac Operators

@inproceedings{Albeverio2006ReconstructionOR,
  title={Reconstruction of Radial Dirac Operators},
  author={Sergio Albeverio and Rostyslav Hryniv and YA. MYKYTYUK},
  year={2006}
}
We study the inverse spectral problem of reconstructing the potential of radial Dirac operators acting in the unit ball of R. For each one-dimensional partial Dirac operator corresponding to a nonzero angular momentum, we give a complete description of the spectral data (eigenvalues and suitably defined norming constants), prove existence and uniqueness of solutions to the inverse problem, and present the reconstruction algorithm. 

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 15 references

Inverse spectral problem for singular Ablowitz–Kaup–Newell–Segur operators on [0

  • F. Serier
  • 1], Inverse Problems 22
  • 2006
Highly Influential
6 Excerpts

and Ya

  • S. Albeverio, R. Hryniv
  • Mykytyuk, Inverse spectral problems for Dirac…
  • 2005
Highly Influential
5 Excerpts

The inverse scattering transform— Fourier analysis for nonlinear problems

  • M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur
  • Stud. Appl. Math. 53
  • 1974
Highly Influential
7 Excerpts

Inverse spectral problem for singular Ablowitz – Kaup – Newell – Segur operators on [ 0 , 1 ]

  • F. Serier
  • Inverse Problems
  • 2006

Inverse spectral problems for Dirac operators with summable potentials

  • R. Hryniv S. Albeverio, Ya. Mykytyuk
  • Russian J . Math . Phys .
  • 2005

Teschl , On the double commutation method

  • G.
  • Proc . Amer . Math . Soc .
  • 1996

A complete spectral characterization of the double commutation method

  • F. Gesztesy
  • J. Funct. Anal. 117,
  • 1993
1 Excerpt

The Dirac Equation

  • B. Thaller
  • Springer, Berlin
  • 1992
1 Excerpt

Similar Papers

Loading similar papers…