Recombinant adeno-associated virus-based gene transfer of cathelicidin induces therapeutic neovascularization preferentially via potent collateral growth.

Abstract

Therapeutic neovascularization is a concept well validated in animal models, however, without clear-cut success in clinical studies. To achieve prolonged transgene expression, recombinant adeno-associated virus (rAAV) was used in a chronic ischemic hind-limb model and the human antimicrobial peptide cathelicidin (LL-37/hCAP-18) was used as proangiogenic factor. Seven days after femoral artery excision, 0.5 x 10(11) rAAV particles encoding for green fluorescent protein (rAAV.GFP), cathelicidin (rAAV.cath), or vascular endothelial growth factor A (rAAV.VEGF-A) were retroinfused into the anterior tibial vein of rabbits (n = 5 per group). In addition, one rAAV.cath-treated group obtained a constant infusion with the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin into the ischemic tissue starting on day 7. On day 7 and day 35 angiography of both hind limbs was performed for collateral quantification and frame count score (cinedensitometry). Capillary-to-muscle fiber ratios were obtained on day 35. Compared with controls, application of rAAV.cath induced a gain of perfusion (153 +/- 12 vs. 107 + 9% of day 7 controls) via increased collateral growth (length index, 161 +/- 14 vs. 97 +/- 9%, controls), but no significant capillary growth (1.16 +/- 0.09 vs. 0.99 +/- 0.08, controls). Wortmannin application completely abolished the effects of rAAV.cath, indicating the involvement of the PI3K signal pathway. In conclusion, rAAV-mediated cathelicidin expression is capable of inducing functionally relevant neovascularization, preferentially by collateral growth. The rAAV-based vectors as long-expressing vector expression systems and cathelicidin as proangiogenic factor provide a promising new combination in the treatment of peripheral artery disease.

DOI: 10.1089/hum.2007.178

Statistics

050020132014201520162017
Citations per Year

96 Citations

Semantic Scholar estimates that this publication has 96 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Pinkenburg2009RecombinantAV, title={Recombinant adeno-associated virus-based gene transfer of cathelicidin induces therapeutic neovascularization preferentially via potent collateral growth.}, author={Olaf Pinkenburg and Achim Pfosser and Rabea Hinkel and Martina B{\"{o}ttcher and Claudia Dinges and Corinna Lebherz and Shahana Sultana and Joerg Enssle and Chiraz El-Aouni and Hildegard Buening and Peter Boekstegers and Robert Bals and Christian Kupatt}, journal={Human gene therapy}, year={2009}, volume={20 2}, pages={159-67} }