Recognition and cleavage of hairpin structures in nucleic acids by oligodeoxynucleotides.

Abstract

The possibility of designing antisense oligodeoxynucleotides complementary to non-adjacent single-stranded sequences containing hairpin structures was studied using a DNA model system. The structure and stability of complexes formed by a 17mer oligonucleotide with DNA fragments containing hairpin structures was investigated by spectroscopic measurements (melting curves) and chemical reactions (osmium tetroxide reaction, copper-phenanthroline cleavage). A three-way junction was formed when the oligonucleotide was bound to both sides of the hairpin structure. When the complementary sequences of the two parts of the oligonucleotide were separated by a sequence which could not form a hairpin, the oligonucleotide exhibited a slightly weaker binding than to the hairpin-containing target. An oligodeoxynucleotide-phenanthroline conjugate was designed to form Watson-Crick base pairs with two single-stranded regions flanking a hairpin structure in a DNA fragment. In the presence of Cu2+ ions and a reducing agent, two main cleavage sites were observed at the end of the duplex structure formed by the oligonucleotide-phenanthroline conjugate with its target sequence. Competition experiments showed that both parts of the oligonucleotide must be bound in order to observe sequence-specific cleavage. Cleavage was still observed with target sequences which could not form a hairpin, provided the reaction was carried out at lower temperatures. These results show that sequence-specific recognition and modification (cleavage) can be achieved with antisense oligonucleotides which bind to non-adjacent sequences in a single-stranded nucleic acid.

Cite this paper

@article{Franois1994RecognitionAC, title={Recognition and cleavage of hairpin structures in nucleic acids by oligodeoxynucleotides.}, author={J C François and Nguyen Thanh Thuong and Claude H{\'e}l{\`e}ne}, journal={Nucleic acids research}, year={1994}, volume={22 19}, pages={3943-50} }