## The limit-circle case for a positive definite J-fraction

- J . J . Dennis, H. S. Wall
- Duke Math. J. vol
- 1945

- Published 2007

J = ('*«)» JPQ = 0 for | p q | ^ 2, ypi> = £p, ip+i,p — ip.p+i = — öp T^ o, such that (1.1) I[J(%, #)] = X I(bp) | ^ | 2 X) ^ ( ^ ) ( ^ ^ + i + «pSp+i) ^ 0 for all #p for which the sums converge. These are the /-matrices associated with a positive definite /-fraction [4, 5, l ] . 1 Let Xp(z) and Yp(z) denote the solutions of the system of linear equations (1.2) — dp-iXp-i + (bp + z)Xp — dpXp+i = 0, p = 1, 2, 3, • • • ; ̂ o = 1 ,

@inproceedings{Wall2007ReciprocalsO,
title={Reciprocals of /-matrices},
author={Hayley S Wall and EI and «K EIWl},
year={2007}
}