Real homotopy theory of Kähler manifolds

@article{Delign1975RealHT,
  title={Real homotopy theory of K{\"a}hler manifolds},
  author={P. Delign{\'e} and P. Griffiths and John Morgan and D. Sullivan},
  journal={Inventiones mathematicae},
  year={1975},
  volume={29},
  pages={245-274}
}
  • P. Deligné, P. Griffiths, +1 author D. Sullivan
  • Published 1975
  • Mathematics
  • Inventiones mathematicae
  • 1. Homotopy Theory of Differential Algebras . . . . . . . . . . 248 2. De Rham Homotopy Theory . . . . . . . . . . . . . . . 254 3. Relation between De Rham Homotopy Theory and Classical Homotopy Theory . . . . . . . . . . . . . . . . . . . . . . . . 256 4. Formality of Differential Algebras . . . . . . . . . . . . . . 260 5. The De Rham Complex of a Compact K~ihler Manifold . . . . . 262 6. The Main Theorem and Two Proofs . . . . . . . . . . . . . 270 7. An Application… CONTINUE READING
    766 Citations

    References

    SHOWING 1-10 OF 25 REFERENCES
    Rational homotopy theory
    • 851
    • PDF
    La conjecture de Weil. I
    • 1,996
    • PDF
    Genetics of homotopy theory and the Adams conjecture
    • 263
    • PDF
    La conjecture de Weft I
    • PuN. Math. IHES
    • 1974
    Th6orie de Hodge IlI
    • Publ. Math. IHES
    • 1974
    Topology of Manifolds and Differential Forms
    • Proceedings of Conference on Manifolds
    • 1973
    Lecture Notes De Rham theory of Sullivan
    • Lecture Notes. Istituto Matematico
    • 1972