Real homotopy theory of Kähler manifolds
@article{Delign1975RealHT, title={Real homotopy theory of K{\"a}hler manifolds}, author={P. Delign{\'e} and P. Griffiths and John Morgan and D. Sullivan}, journal={Inventiones mathematicae}, year={1975}, volume={29}, pages={245-274} }
1. Homotopy Theory of Differential Algebras . . . . . . . . . . 248 2. De Rham Homotopy Theory . . . . . . . . . . . . . . . 254 3. Relation between De Rham Homotopy Theory and Classical Homotopy Theory . . . . . . . . . . . . . . . . . . . . . . . . 256 4. Formality of Differential Algebras . . . . . . . . . . . . . . 260 5. The De Rham Complex of a Compact K~ihler Manifold . . . . . 262 6. The Main Theorem and Two Proofs . . . . . . . . . . . . . 270 7. An Application… CONTINUE READING
766 Citations
References
SHOWING 1-10 OF 25 REFERENCES
La conjecture de Weft I
- PuN. Math. IHES
- 1974
Th6orie de Hodge IlI
- Publ. Math. IHES
- 1974
Topology of Manifolds and Differential Forms
- Proceedings of Conference on Manifolds
- 1973
Lecture Notes De Rham theory of Sullivan
- Lecture Notes. Istituto Matematico
- 1972