Real homotopy theory of Kähler manifolds

@article{Delign1975RealHT,
  title={Real homotopy theory of K{\"a}hler manifolds},
  author={P. Delign{\'e} and P. Griffiths and John Morgan and D. Sullivan},
  journal={Inventiones mathematicae},
  year={1975},
  volume={29},
  pages={245-274}
}
1. Homotopy Theory of Differential Algebras . . . . . . . . . . 248 2. De Rham Homotopy Theory . . . . . . . . . . . . . . . 254 3. Relation between De Rham Homotopy Theory and Classical Homotopy Theory . . . . . . . . . . . . . . . . . . . . . . . . 256 4. Formality of Differential Algebras . . . . . . . . . . . . . . 260 5. The De Rham Complex of a Compact K~ihler Manifold . . . . . 262 6. The Main Theorem and Two Proofs . . . . . . . . . . . . . 270 7. An Application… Expand
767 Citations

References

SHOWING 1-10 OF 25 REFERENCES
Rational homotopy theory
  • 849
  • PDF
La conjecture de Weil. I
  • 2,006
  • PDF
Genetics of homotopy theory and the Adams conjecture
  • 264
  • PDF
La conjecture de Weft I
  • PuN. Math. IHES
  • 1974
Th6orie de Hodge IlI
  • Publ. Math. IHES
  • 1974
Topology of Manifolds and Differential Forms
  • Proceedings of Conference on Manifolds
  • 1973
Lecture Notes De Rham theory of Sullivan
  • Lecture Notes. Istituto Matematico
  • 1972
...
1
2
3
...