Real closures of commutative rings. II.

@article{Knebusch1976RealCO,
  title={Real closures of commutative rings. II.},
  author={Manfred Knebusch},
  journal={Journal f{\"u}r die reine und angewandte Mathematik (Crelles Journal)},
  year={1976},
  volume={1976},
  pages={278 - 313}
}
  • Manfred Knebusch
  • Published 1976
  • Mathematics
  • Journal für die reine und angewandte Mathematik (Crelles Journal)
This is the second and final part of a paper [11] dedicated to Helmut Hasse on his 75 birthday. The emphasis will be on local studies, and the central result is the main theorem 10. 12 at the end of § 10. This is a theorem about semi-local rings with involution, which in the special case of trivial Involution teils us, that the signatures of the semi-local ring A correspond uniquely to the conjugacy classes of elernents of order 2 in the Galois group G( \A). 

Model Theory of Real Closed Rings

We show that the class of real closed rings is an elementary class, i.e., it can be axiomatized in the rst order language of rings. Adding a binary`radical relation' which encodes information about

Semialgebraic topology over a real closed field I: Paths and components in the set of rational points of an algebraic variety

We fix once and for all a real closed base field R. By a variety X over R we mean a separated algebraic scheme X over R. For all problems attacked here we could equally well assume that X is also

References

SHOWING 1-10 OF 22 REFERENCES

Real closures of semilocal rings, and extension of real places

(A) All rings in this announcement are commutative and with 1. For any ring K we denote by W(K) the Witt ring of nondegenerate symmetric bilinear forms over K. DEFINITION 1. A signature o of K is a

Structure of Wittrings and Quotients of Abelian Group Rings

In this paper we give a detailed exposition of some of the results announced in [18]. The primary motivation for this work is Witt's observation [31, Satz 7] that if F is a field of characteristic

The group of quadratic extensions

Grothendieck and Wittrings of hermetian forms over Dedekind rings

The prime ideal theory of the Grothendieck and Witt ring of non-degenerat e hermitian forms over a Dedekind ring with involution is studied. The relationship of these rings to those defined over the

A note on Witt rings

This note contains some applications of the theory of Mackey functors (cf. [3], [4] and [5]) to the study of Witt rings. A detailed version may be found in [3, Appendices A and B]. So let R be a

Grothendieck- und Wittringe von nichtausgearteten symmetrischen Bilinearformen

Diese Arbeit besteht aus drei Teilen. In § 1–4 entwickeln wir die Definition des Wittringes W (X) der nichtausgearteten symmetrischen Bilinearraume uber einem beliebigen Schema X (= Praschema in der

Zerlegung reeller algebraischer Funktionen in Quadrate. Schiefkörper über reellem Funktionenkörper.

Mit der Darstellung von Funktionen durch Quadrate hat sich zuerst Hubert beschäftigt. Dann haben Landau und Artin die Untersuchungen darüber fortgeführt. Hier sollen die Funktionen eines reellen

Theorie der quadratischen Formen in beliebigen Körpern.

----------------------------------------------------Nutzungsbedingungen DigiZeitschriften e.V. gewährt ein nicht exklusives, nicht übertragbares, persönliches und beschränktes Recht auf Nutzung

Eine Kennzeichnung der reell abgeschlossenen Körper