Real Hypersurfaces in Quaternionic Space Forms Satyisfying Axioms of Planes

@inproceedings{Granada2001RealHI,
  title={Real Hypersurfaces in Quaternionic Space Forms Satyisfying Axioms of Planes},
  author={M. Granada},
  year={2001}
}
A Riemannian manifold satis es the axiom of 2-planes if at each point, there are su ciently many totally geodesic surfaces passing through that point. Real hypersurfaces in quaternionic space forms admit nice families of tangent planes, namely, totally real, half-quaternionic and quaternionic. Several de nitions of axiom of planes arise naturally when we consider such families of tangent planes. We are able to classify real hypersurfaces in quaternionic space forms satisfying these de nitions. 

From This Paper

Topics from this paper.
7 Citations
9 References
Similar Papers

References

Publications referenced by this paper.
Showing 1-9 of 9 references

Real hypersurfaces in quaternionic space forms

  • J. Berndt
  • J. Reine. Angew. Math., 419
  • 1991
Highly Influential
4 Excerpts

Pseudo-Riemannian almost product manifolds and submersions

  • A. Gray
  • J. Math. and Mech., 16
  • 1967
Highly Influential
3 Excerpts

Parallel submanifolds in a quaternion projective space

  • K. Tsukada
  • Osaka J. Math., 22 (1985), 187{241.
  • 2000

The axiom of spheres in quaternionic geometry

  • S. Dragomir
  • Ann. Univ. Ferrara, Sez. VII, Sc Mat. Vol. XXXIV
  • 1988

On the axioms of planes in quaternionic geometry, Ann

  • J. D. P erez, F. G. Santos, F. Urbano
  • Mat. Pura Appl., (IV)
  • 1982
2 Excerpts

Quaternion Kalerian manifolds

  • S. Ishihara
  • J. Di . Geom., 9
  • 1974

Conditions for constancy of the holomorphic sectional curvature

  • K. Nomizu
  • J. Di . Geom., 8
  • 1973

A note on manifolds whose holonomy group is a subgroup of Sp (m) Sp (1)

  • A. Gray
  • Michigan Math. J., 16
  • 1969
1 Excerpt

Le con sur la G eom etrie des Espaces de Riemann

  • E. Cartan
  • Gauthier-Villards
  • 1946
1 Excerpt

Similar Papers

Loading similar papers…