Reaction Mechanisms in Carbohydrate-Active Enzymes: Glycoside Hydrolases and Glycosyltransferases. Insights from ab Initio Quantum Mechanics/Molecular Mechanics Dynamic Simulations.

@article{Ardvol2015ReactionMI,
  title={Reaction Mechanisms in Carbohydrate-Active Enzymes: Glycoside Hydrolases and Glycosyltransferases. Insights from ab Initio Quantum Mechanics/Molecular Mechanics Dynamic Simulations.},
  author={Albert Ard{\`e}vol and Carme Rovira},
  journal={Journal of the American Chemical Society},
  year={2015},
  volume={137 24},
  pages={7528-47}
}
Carbohydrate-active enzymes such as glycoside hydrolases (GHs) and glycosyltransferases (GTs) are of growing importance as drug targets. The development of efficient competitive inhibitors and chaperones to treat diseases related to these enzymes requires a detailed knowledge of their mechanisms of action. In recent years, sophisticated first-principles modeling approaches have significantly advanced in our understanding of the catalytic mechanisms of GHs and GTs, not only the molecular details… CONTINUE READING