Rational equivalence of 0-cycles on K 3 surfaces and conjectures of Huybrechts and O ’ Grady

@inproceedings{Voisin2013RationalEO,
  title={Rational equivalence of 0-cycles on K 3 surfaces and conjectures of Huybrechts and O ’ Grady},
  author={Claire Voisin},
  year={2013}
}
We give a new interpretation of O’Grady’s filtration on the CH0 group of a K3 surface. In particular, we get a new characterization of the canonical 0-cycles kcX : given k ≥ 0, kcX is the only 0-cycle of degree k on X whose orbit under rational equivalence is of dimension k. Using this, we extend results of Huybrechts and O’Grady concerning Chern classes of simple vector bundles on K3 surfaces. 
Highly Cited
This paper has 20 citations. REVIEW CITATIONS

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 15 references

Chow groups of K3 surfaces and spherical objects, JEMS

D. Huybrechts
2010
View 12 Excerpts
Highly Influenced

On the Chow Ring of a K3 Surface

V Claire
-1
View 3 Excerpts
Highly Influenced

The geometry of moduli spaces of sheaves, Second Edition, Cambridge Mathematical Library, CUP

D. Huybrechts, M. Lehn
2010
View 1 Excerpt

Chow groups of surfaces with h ≤ 1

C. Maclean
C. R. Math. Acad. Sci. Paris • 2004
View 2 Excerpts

Hodge Theory and Complex Algebraic Geometry II, Cambridge studies in advanced Mathematics 77

C. Voisin
Palaiseau Cédex France voisin@math.polytechnique.fr • 2003

Brill-Noether-Petri without degenerations

R. Lazarsfeld
J. Differential Geom • 1986
View 1 Excerpt

Description de H ilb n C { x , y } , Invent

B. Hassett, Yu. Tschinkel
Intersection theory , Ergebnisse der Mathematik und ihrer Grenzgebiete • 1984

Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete

W. Fulton
1984

Similar Papers

Loading similar papers…