Rational design of peptide ligand for affinity chromatography of tissue-type plasminogen activator by the combination of docking and molecular dynamics simulations.

Abstract

Combined docking and molecular dynamics (MD) simulations are carried out for the rational design of affinity peptide ligand of tissue-type plasminogen activator (t-PA). Ten amino acids that have high affinity to three different regions of t-PA are identified by the amino acids location method on the basis of candidate pocket structure of t-PA. Then, 14 tetrapeptides are built and docked into the candidate pocket of t-PA. The absolute value of the D(score) calculated from the docking simulation is used to assess the affinity of a peptide for t-PA. Consequently, six tetrapeptides that have high D(score) values are selected and linked to a spacer arm of [NH(CH(2))(6)NH(2)] that is present on EAH Sepharose gel. The linked compounds are further evaluated by docking into the candidate pocket of t-PA. As a result, the tetrapeptide QDES with the highest D(score) value is selected. Molecular surface analysis with the MOLCAD program reveals that electrostatic interactions and hydrogen bonds (H-bonds) contribute to the affinity interactions between the tetrapeptide and t-PA. MD simulations indicate that QDES-t-PA complex keeps stable, and the distances between the carboxyl groups of Asp189, Gln192 and Asp194 and the charged amino group of glutamine change little. Moreover, all the nine H-bonds found in the docking simulation are confirmed by the MD simulations. It is also found that three water molecules act as bridges between the ligand and the protein pocket by hydrogen bonding. Finally, high binding affinity and specificity of the peptide ligand are confirmed by the purification of t-PA from crude porcine heart extract using the immobilized-ligand column for affinity chromatography.

Cite this paper

@article{Liu2007RationalDO, title={Rational design of peptide ligand for affinity chromatography of tissue-type plasminogen activator by the combination of docking and molecular dynamics simulations.}, author={Fu-feng Liu and Xiao-yan Dong and Tao Wang and Yan Sun}, journal={Journal of chromatography. A}, year={2007}, volume={1175 2}, pages={249-58} }