# Rational approximations to the dilogarithm

@article{Hata1993RationalAT, title={Rational approximations to the dilogarithm}, author={Masayoshi Hata}, journal={Transactions of the American Mathematical Society}, year={1993}, volume={336}, pages={363-387} }

The irrationality proof of the values of the dilogarithmic function L 2 (z) at rational points z = 1/k for every integer k ∈ (−∞, −5] ∪ [7, ∞) is given. To show this we develop the method of Pade-type approximations using Legendre-type polynomials, which also derives good irrationality measures of L 2 (1/k). Moreover, the linear independence over Q of the numbers 1, log(1 − 1/k), and L 2 (1/k) is also obtained for each integer k ∈ (−∞, −5] ∪ [7, ∞)

#### 19 Citations

NEW IRRATIONALITY RESULTS FOR DILOGARITHMS OF RATIONAL NUMBERS

- Mathematics
- 2008

A natural method to investigate diophantine properties of transcendental (or conjecturally transcendental) constants occurring in various mathematical contexts consists in the search for sequences of… Expand

C-SADDLE METHOD AND BEUKERS’ INTEGRAL

- 2000

We give good non-quadraticity measures for the values of logarithm at specific rational points by modifying Beukers’ double integral. The two-dimensional version of the saddle method, which we call… Expand

A simple proof of the irrationality of the trilog

- Mathematics
- 2001

We use orthogonal polynomials to give a simple proof of the irrationality of the trilog. An approximating formula for Riemann Zeta-function in the critical strip is derived. O. Introduction. 103 In… Expand

Arithmetic of linear forms involving odd zeta values

- Mathematics
- 2002

The story exposed in this paper starts in 1978, when R. Apery [Ap] gave a surprising sequence of exercises demonstrating the irrationality of ζ(2) and ζ(3). (For a nice explanation of Apery’s… Expand

Irrationalit\'e de valeurs de z\^eta (d'apr\`es Ap\'ery, Rivoal, ...)

- Mathematics
- 2003

This survey text deals with irrationality, and linear independence over the rationals, of values at positive odd integers of Riemann zeta function. The first section gives all known proofs (and… Expand

The permutation group method for the dilogarithm

- Mathematics
- 2005

We give qualitative and quantitative improvements on all the best pre- viously known irrationality results for dilogarithms of positive rational numbers. We obtain such improvements by applying our… Expand

On a continued fraction expansion for Euler's constant

- Mathematics
- 2010

Recently, A. I. Aptekarev and his collaborators found a sequence of rational approximations to Euler's constant $\gamma$ defined by a third-order homogeneous linear recurrence. In this paper, we give… Expand

On linear independence of values of generalized polylogarithms

- Mathematics
- 2001

The linear independence of the values at certain rational points of generalized polylogarithms, which generate the algebra of all analytic functions with three logarithmic branch points, is… Expand

Disproof of a conjecture by Rademacher on partial fractions

- Mathematics
- 2013

In his book Topics in Analytic Number Theory, Rademacher considered the generating function of partitions into at most $N$ parts, and conjectured certain limits for the coefficients of its partial… Expand

Approximations to-, di-and tri-logarithms Wadim Zudilin

- 2004

We propose hypergeometric constructions of simultaneous approximations to polylogarithms. These approximations suit for computing the values of polylogarithms and satisfy 4-term Apéry-like… Expand

#### References

SHOWING 1-10 OF 12 REFERENCES

A Note on the Irrationality of ζ(2) and ζ(3)

- Mathematics
- 1979

At the “Journees Arithmetiques” held at Marseille-Luminy in June 1978, R. Apery confronted his audience with a miraculous proof for the irrationality of ζ(3) = l-3+ 2-3+ 3-3 + .... The proof was… Expand

Padé and rational approximations to systems of functions and their arithmetic applications

- Mathematics
- 1984

Journées Arithmétiques 1980: Measures of irrationality, transcendence and algebraic independence: recent progress

- Mathematics
- 1982

Polylogarithms and associated functions, North-Holland

- New York,
- 1981

A proof that Euler missed—Apery's proof of the irrationality of f(3)

- Math. Intelligencer
- 1979

Padé approximations to the generalized hypergeometric functions

- I, J. Math. Pures Appl
- 1979