Rate of convergence of bounded variation functions by a Bézier-Durrmeyer variant of the Baskakov operators

Abstract

is the Baskakov basis function. Note that (1.1) is well defined, for n ≥ r +2, provided that f(t) = O(tr ) as t → ∞. The operators (1.1) were first introduced by Sahai and Prasad [9]. They termed these operators as modified Lupaş operators. In 1991, Sinha et al. [10] improved and corrected the results of [9] and denoted Ṽn as modified Baskakov operators… (More)
DOI: 10.1155/S0161171204205038

Topics

Figures and Tables

Sorry, we couldn't extract any figures or tables for this paper.

Slides referencing similar topics