• Corpus ID: 14301968

Ranks of Quotients, Remainders and $p$-Adic Digits of Matrices

@article{Elsheikh2014RanksOQ,
  title={Ranks of Quotients, Remainders and \$p\$-Adic Digits of Matrices},
  author={Mustafa Elsheikh and Andrew Novocin and Mark Giesbrecht},
  journal={ArXiv},
  year={2014},
  volume={abs/1401.6667}
}
For a prime $p$ and a matrix $A \in \mathbb{Z}^{n \times n}$, write $A$ as $A = p (A \,\mathrm{quo}\, p) + (A \,\mathrm{rem}\, p)$ where the remainder and quotient operations are applied element-wise. Write the $p$-adic expansion of $A$ as $A = A^{[0]} + p A^{[1]} + p^2 A^{[2]} + \cdots$ where each $A^{[i]} \in \mathbb{Z}^{n \times n}$ has entries between $[0, p-1]$. Upper bounds are proven for the $\mathbb{Z}$-ranks of $A \,\mathrm{rem}\, p$, and $A \,\mathrm{quo}\, p$. Also, upper bounds are… 

Figures from this paper

References

SHOWING 1-4 OF 4 REFERENCES
Ueber die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen.
Jui der Abhandlung Bd. 44, pag. 93 dieses Journals, welche denselben Titel f hrt, habe ich gezeigt, dafs die auf irgend eine ideale oder wirkliche Primzahl /"(a), in der Theorie der aus λ* Wurzeln
Fast computation of Smith forms of sparse matrices over local rings
TLDR
An algorithm which is time- and memory-efficient when the number of nontrivial invariant factors is small is given, and a method for dimension reduction while preserving the invariant Factors is described.
Integral Matrices
  • Academic Press, New York, NY, USA,
  • 1972