Ranks of Quotients, Remainders and $p$-Adic Digits of Matrices
@article{Elsheikh2014RanksOQ, title={Ranks of Quotients, Remainders and \$p\$-Adic Digits of Matrices}, author={Mustafa Elsheikh and Andrew Novocin and Mark Giesbrecht}, journal={ArXiv}, year={2014}, volume={abs/1401.6667} }
For a prime $p$ and a matrix $A \in \mathbb{Z}^{n \times n}$, write $A$ as $A = p (A \,\mathrm{quo}\, p) + (A \,\mathrm{rem}\, p)$ where the remainder and quotient operations are applied element-wise. Write the $p$-adic expansion of $A$ as $A = A^{[0]} + p A^{[1]} + p^2 A^{[2]} + \cdots$ where each $A^{[i]} \in \mathbb{Z}^{n \times n}$ has entries between $[0, p-1]$. Upper bounds are proven for the $\mathbb{Z}$-ranks of $A \,\mathrm{rem}\, p$, and $A \,\mathrm{quo}\, p$. Also, upper bounds are…
Figures from this paper
References
SHOWING 1-4 OF 4 REFERENCES
Ueber die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen.
- Mathematics
- 1852
Jui der Abhandlung Bd. 44, pag. 93 dieses Journals, welche denselben Titel f hrt, habe ich gezeigt, dafs die auf irgend eine ideale oder wirkliche Primzahl /"(a), in der Theorie der aus λ* Wurzeln…
Fast computation of Smith forms of sparse matrices over local rings
- Computer ScienceISSAC
- 2012
An algorithm which is time- and memory-efficient when the number of nontrivial invariant factors is small is given, and a method for dimension reduction while preserving the invariant Factors is described.
Integral Matrices
- Academic Press, New York, NY, USA,
- 1972