Rank One Solvable p-adic Differential Equations and Finite Abelian Characters via Lubin-Tate Groups

@inproceedings{PulitaRankOS,
  title={Rank One Solvable p-adic Differential Equations and Finite Abelian Characters via Lubin-Tate Groups},
  author={Andrea Pulita}
}
  • Andrea Pulita
We introduce a new class of exponentials of Artin-Hasse type, called π-exponentials. These exponentials depend on the choice of a generator π of the Tate module of a Lubin-Tate group G over Zp. They arise naturally as solutions of solvable differential modules over the Robba Ring. If G is isomorphic to b Gm over Zp, we develop methods to test their over-convergence, and get in this way a stronger version of the Frobenius Structure Theorem for differential equations. We define a natural… CONTINUE READING

From This Paper

Topics from this paper.
2 Citations
30 References
Similar Papers

Citations

Publications citing this paper.

References

Publications referenced by this paper.
Showing 1-10 of 30 references

Analogue p-adique du théorème de Turrittin et le théorème de la monodromie p-adique

  • Z Mebkhout
  • Invent. Math
  • 2002

Filtrations de type Hasse-Arf et monodromie p-adique

  • Y And, André
  • Invent. Math
  • 2002

Katz correspondence for quasi-unipotent overconvergent isocrystals

  • Shigeki Matsuda
  • Compositio Math
  • 2002

Una generalizzazione del π di dwork. Tesi di laurea

  • D Chinellato
  • Univ. Padova
  • 2002

´ Equations différentielles p-adiques et coefficients p-adiques sur les courbes

  • G Christol, Z Mebkhout
  • Cohomologies p-adiques et applications arithm…
  • 2002

Canonical extensions, irregularities, and the Swan conductor

  • Richard Crew
  • Math. Ann
  • 2000

Similar Papers

Loading similar papers…