Random Walks on Finite Quantum Groups

@article{Baraquin2018RandomWO,
  title={Random Walks on Finite Quantum Groups},
  author={Isabelle Baraquin},
  journal={Journal of Theoretical Probability},
  year={2018},
  volume={33},
  pages={1715-1736}
}
In this paper, we study convergence of random walks, on finite quantum groups, arising from linear combination of irreducible characters. We bound the distance to the Haar state and determine the asymptotic behavior, i.e., the limit state if it exists. We note that the possible limits are any central idempotent state. We also look at cutoff phenomenon in the Sekine finite quantum groups. 
3 Citations
Random Walks on Finite Quantum Groups: Diaconis-Shahshahani Theory for Quantum Groups
  • 10
  • Highly Influenced
  • PDF
Diaconis–Shahshahani Upper Bound Lemma for Finite Quantum Groups
  • 4
  • Highly Influenced
  • PDF
Idempotent states on Sekine quantum groups
  • 3
  • PDF

References

SHOWING 1-10 OF 17 REFERENCES
Quantum reflections, random walks and cut-off
  • 4
  • PDF
Cut-off phenomenon for random walks on free orthogonal quantum groups
  • 13
  • PDF
On idempotent states on quantum groups
  • 44
  • PDF
Random Walks on Finite Quantum Groups: Diaconis-Shahshahani Theory for Quantum Groups
  • 10
  • Highly Influential
  • PDF
Diaconis–Shahshahani Upper Bound Lemma for Finite Quantum Groups
  • 4
  • PDF
Idempotent states on Sekine quantum groups
  • 3
  • Highly Influential
  • PDF
Random Walks on Finite Groups
  • 170
  • Highly Influential
  • PDF
A counterexample on idempotent states on a compact quantum group
  • 24
  • PDF
Notes on Compact Quantum Groups
  • 189
  • PDF
...
1
2
...