Corpus ID: 10620992

Random Morse functions and spectral geometry

@article{Nicolaescu2012RandomMF,
  title={Random Morse functions and spectral geometry},
  author={L. Nicolaescu},
  journal={arXiv: Differential Geometry},
  year={2012}
}
  • L. Nicolaescu
  • Published 2012
  • Mathematics
  • arXiv: Differential Geometry
  • We study random Morse functions on a Riemann manifold $(M^m,g)$ defined as a random Gaussian weighted superpositions of eigenfunctions of the Laplacian of the metric $g$. The randomness is determined by a fixed Schwartz function $w$ and a small parameter $\varepsilon>0$. We first prove that as $\varepsilon\to 0$ the expected distribution of critical values of this random function approaches a universal measure on $\mathbb{R}$, independent of $g$, that can be explicitly described in terms the… CONTINUE READING
    14 Citations
    A stochastic Gauss–Bonnet–Chern formula
    • 4
    • PDF
    Embeddings of Riemannian manifolds with heat kernels and eigenfunctions
    • 37
    • PDF
    Quantum isometries and loose embeddings
    • 1
    • PDF
    Random Chain Complexes
    • 2
    • PDF
    Complexity of random smooth functions on compact manifolds
    • 20
    • PDF

    References

    SHOWING 1-10 OF 47 REFERENCES
    Critical sets of random smooth functions on compact manifolds
    • 31
    • PDF
    Complexity of random energy landscapes, glass transition, and absolute value of the spectral determinant of random matrices.
    • Y. Fyodorov
    • Medicine, Physics
    • Physical review letters
    • 2004
    • 60
    • PDF
    Introduction to Random Matrices
    • 590
    • PDF
    Complexity of random smooth functions on compact manifolds
    • 20
    • PDF
    Random Matrices and complexity of Spin Glasses
    • 157
    • PDF
    Random Fields and Geometry
    • 1,133
    Probability theory - a comprehensive course
    • A. Klenke
    • Computer Science, Mathematics
    • Universitext
    • 2008
    • 504
    Eigenvalues in Riemannian geometry
    • 1,716