Random Fractal Strings : Their Zeta Functions , Complex Dimensions and Spectral Asymptotics

@inproceedings{Hambly2004RandomFS,
  title={Random Fractal Strings : Their Zeta Functions , Complex Dimensions and Spectral Asymptotics},
  author={B. M. Hambly and Leif Lapidus},
  year={2004}
}
In this paper a string is a sequence of positive non-increasing real numbers which sums to one. For our purposes a fractal string is a string formed from the lengths of removed sub-intervals created by a recursive decomposition of the unit interval. By using the so-called complex dimensions of the string, the poles of an associated zeta function, it is possible to obtain detailed information about the behaviour of the asymptotic properties of the string. We consider random versions of fractal… CONTINUE READING

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 19 references

Frankenhuysen, Fractality, self-similarity and complex dimensions. in Fractal Geometry and Applications: a Jubilee of Benoit Mandelbrot

  • M. L. Lapidus, M. van
  • Proc. Sympos. Pure Math.,
  • 2004
Highly Influential
3 Excerpts

Hambly , Brownian motion on a random recursive Sierpinski gasket

  • M. B.
  • Trans . Amer . Math . Soc .
  • 2000

Brownian motion on a random recursive Sierpinski gasket

  • B. M. Hambly
  • Ann. Probab. 25, 1059–1102
  • 1997

Stone , On moment generating functions and renewal theory

  • J. C.
  • Ann . Probab .
  • 1997

Transition density estimates for Brownian motion on scale irregular Sierpinski gaskets

  • M. T. Barlow, B. M. Hambly
  • Ann. Inst. H. Poincaré Probab. Statist. 33, 531…
  • 1997
2 Excerpts

Fractals

  • W. D. Evans, D. J. Harris
  • trees and the Neumann Laplacian. Math. Ann. 296…
  • 1993
1 Excerpt

Fractals , trees and the Neumann Laplacian

  • D. J. Harris
  • Math . Ann .
  • 1993

Similar Papers

Loading similar papers…