- Published 1998 in Applied optics

Measurements of the magnitude and spectral distribution of the Raman-scattering coefficients of pure water (b(rw)) and seawater (b(rs)) are presented. Two independent measurements of the spectral distribution of the Raman-scattering coefficient of pure water were made for incident wavelengths ranging from 250 to 500 nm. These measurements revealed a strong dependence of b(rw) on wavelength that could be represented by a (lambda')(-5.3+/-0.3) relationship, where lambda' is the incident wavelength, or a lambda(-4.6+/-0.3) relationship, where lambda is the Raman-scattered wavelength, when normalized to units of photons. The corresponding relationships for normalization to energy are (lambda')(-5.5+/-0.4) and lambda(-4.8+/-0.3), respectively. These relationships are found to be consistent with resonance Raman theory for an absorption wavelength of 130 nm. The absolute value of b(rw) for the 3400-cm(-1) line was found to be (2.7 +/- 0.2) x 10(-4) m(-1) for an incident wavelength of 488 nm, which is consistent with a number of earlier reports. The difference between the magnitudes of the Raman-scattering coefficients for pure water and seawater was statistically insignificant.

@article{Bartlett1998RamanSB,
title={Raman scattering by pure water and seawater.},
author={Jasmine S. Bartlett and Kenneth J. Voss and Shubha Sathyendranath and Anthony Vodacek},
journal={Applied optics},
year={1998},
volume={37 15},
pages={3324-32}
}