Radioligand Binding Properties and Pharmacological Characterization of 6-Amino-N-cyclohexyl-N,3-dimethylthiazolo[3,2-a]benzimidazole-2-carboxamide (YM-298198), a High-Affinity, Selective, and Noncompetitive Antagonist of Metabotropic Glutamate Receptor Type 1

@article{Kohara2005RadioligandBP,
  title={Radioligand Binding Properties and Pharmacological Characterization of 6-Amino-N-cyclohexyl-N,3-dimethylthiazolo[3,2-a]benzimidazole-2-carboxamide (YM-298198), a High-Affinity, Selective, and Noncompetitive Antagonist of Metabotropic Glutamate Receptor Type 1},
  author={Atsuyuki Kohara and Takashi Toya and Seiji Tamura and Tomonari Watabiki and Yukinori Nagakura and Yoshitsugu Shitaka and Satoshi Hayashibe and Shigeki Kawabata and Masamichi Okada},
  journal={Journal of Pharmacology and Experimental Therapeutics},
  year={2005},
  volume={315},
  pages={163 - 169}
}
  • A. Kohara, T. Toya, M. Okada
  • Published 1 October 2005
  • Biology, Chemistry
  • Journal of Pharmacology and Experimental Therapeutics
Metabotropic glutamate receptor type 1 (mGluR1) is thought to play important roles in the neurotransmission and pathogenesis of several neurological disorders. Here, we describe the radioligand binding properties and pharmacological effects of a newly synthesized, high-affinity, selective, and noncompetitive mGluR1 antagonist, 6-amino-N-cyclohexyl-N,3-dimethylthiazolo[3,2-a]benzimidazole-2-carboxamide (YM-298198). YM-298198 inhibited glutamate-induced inositol phosphate production in mGluR1… 

Figures and Tables from this paper

Pharmacological Characterization of a New, Orally Active and Potent Allosteric Metabotropic Glutamate Receptor 1 Antagonist, 4-[1-(2-Fluoropyridin-3-yl)-5-methyl-1H-1,2,3-triazol-4-yl]-N-isopropyl-N-methyl-3,6-dihydropyridine-1(2H)-carboxamide (FTIDC)
TLDR
FTIDC is a highly potent and selective allosteric mGluR1 antagonist and a compound having oral activity without species differences in its antagonistic activity on recombinant human, mouse, and rat mGlamR1 and could be a valuable tool for elucidating the functions of mGLUR1 not only in rodents but also in humans.
Correlation of receptor occupancy of metabotropic glutamate receptor subtype 1 (mGluR1) in mouse brain with in vivo activity of allosteric mGluR1 antagonists.
TLDR
The relationship between receptor occupancy and in vivo pharmacological activity of mGluR1 antagonists was clarified and receptor occupancy assays could help provide guidelines for selecting appropriate doses of allosteric mGLUR1 antagonist for examining the function of mR1 in vivo.
A Novel Class of Positive Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 1 Interact with a Site Distinct from That of Negative Allosteric Modulators
TLDR
Analysis of CDPPB analogs and site-directed mutagenesis suggest that valine at position 757 in transmembrane V of mGluR1a is crucial for the activity of multiple classes of allosteric mGLUR1 potentiators.
...
1
2
3
4
5
...

References

SHOWING 1-10 OF 35 REFERENCES
[3H]R214127: a novel high-affinity radioligand for the mGlu1 receptor reveals a common binding site shared by multiple allosteric antagonists.
TLDR
The high affinity and selectivity of [(3)H]R214127 for mGlu1 receptors renders this compound the ligand of choice to study the native mGLU1 receptor in brain.
CPCCOEt, a noncompetitive metabotropic glutamate receptor 1 antagonist, inhibits receptor signaling without affecting glutamate binding.
TLDR
It is proposed that the interaction of CPCCOEt with Thr815 and Ala818 of mGluR1 disrupts receptor activation by inhibiting an intramolecular interaction between the agonist-bound extracellular domain and the transmembrane domain.
Characterization of [3H]Quisqualate Binding to Recombinant Rat Metabotropic Glutamate 1a and 5a Receptors and to Rat and Human Brain Sections
TLDR
The bindingprofile correlated well with the cellular sites of synthesis and regionalexpression of the respective group I receptor proteins revealed by in situhybridization histochemistry and immunohistochemistry, respectively.
BAY36-7620: a potent non-competitive mGlu1 receptor antagonist with inverse agonist activity.
TLDR
BAY36-7620 will be useful to further delineate the functional importance of the mGlu1 receptor, including its putative agonist-independent activity, andTransmembrane helices 4 to 7 are shown to play a critical role in the selectivity of BAY36- 7620.
Neuroprotective and behavioral effects of the selective metabotropic glutamate mGlu(1) receptor antagonist BAY 36-7620.
Cloned glutamate receptors.
The application of molecular cloning technology to the study of the glutamate receptor system has led to an explosion of knowledge about the structure, expression, and function of this most important
...
1
2
3
4
...