Radial fast spin-echo method for T2-weighted imaging and T2 mapping of the liver.

Abstract

PURPOSE To evaluate a multishot radial fast-spin echo (RAD-FSE) method developed to improve the quality of abdominal T2-weighted imaging as well as the characterization of focal liver lesions. MATERIALS AND METHODS The RAD-FSE sequence used in this work consisted of a preparatory period followed by a short echo train (ETL = 16). A novel radial k-space trajectory was used to minimize streaking artifacts due to T2 variations and motion. Small diffusion gradients (b = 1.2 mm/s(2)) were used to improve flow suppression. The quality of images obtained with RAD-FSE was compared to multishot 2DFT fast spin-echo (2DFT-FSE) and half-Fourier acquisition single-shot turbo-spin-echo (HASTE) images using data from 16 patients. A postprocessing algorithm was used to generate multiple high-resolution images (at different effective TE values) as well as a T2 map from a single RAD-FSE data set. The T2 maps were used to differentiate malignant from benign lesions for a set of 33 lesions ranging from 0.8-194 cm(3). RESULTS RAD-FSE produces high-resolution images of the liver in a breath-hold without the motion artifacts of 2DFT-FSE methods, and without the blurriness and loss of small lesion detectability of HASTE. The inclusion of diffusion weighting in RAD-FSE decreases the signal from blood in hepatic vessels, which improves lesion visualization. The T2 values obtained by postprocessing a single RAD-FSE data set can differentiate malignant from benign lesions. The mean T2 values obtained for malignancies, hemangiomas, and cysts are 108 +/- 30 msec, 240 +/- 14 msec, and 572 +/- 334 msec, respectively. CONCLUSION These results indicate that RAD-FSE produces abdominal images of higher quality than 2DFT-FSE and HASTE. In addition, lesions can be characterized using T2 maps generated from a single RAD-FSE data set.

010203020072008200920102011201220132014201520162017
Citations per Year

62 Citations

Semantic Scholar estimates that this publication has 62 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Altbach2002RadialFS, title={Radial fast spin-echo method for T2-weighted imaging and T2 mapping of the liver.}, author={Maria I. Altbach and Eric K Outwater and Theodore P. Trouard and Elizabeth A. Krupinski and Rebecca J. Theilmann and Alison T Stopeck and Mitsuko Kono and Arthur F. Gmitro}, journal={Journal of magnetic resonance imaging : JMRI}, year={2002}, volume={16 2}, pages={179-89} }