Rademacher Chaos : Tail Estimates Vs Limit Theorems

@inproceedings{Blei2002RademacherC,
  title={Rademacher Chaos : Tail Estimates Vs Limit Theorems},
  author={Ron Blei and Svante Janson},
  year={2002}
}
We study Rademacher chaos indexed by a sparse set which has a fractional combinatorial dimension. We obtain tail estimates for finite sums and a normal limit theorem as the size tends to infinity. The tails for finite sums may be much larger that the tails of the limit. 

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 23 references

On bounded bilinear forms in an infinite number of variables

  • J. E. Littlewood
  • Quart. J. Math. Oxford
  • 1930
Highly Influential
2 Excerpts

Rademacher chaos: tail estimates vs limit theorems

  • R. Blei, S. Janson
  • Tech. Report No
  • 2002
1 Excerpt

Analysis in Integer and Fractional Dimension

  • R. Blei
  • 2001
1 Excerpt

Étude des coefficients de Fourier des fonctions de L p ( G )

  • A. Bonami
  • Ann . Inst . Fourier
  • 2001

A bound on tail probabilities for quadratic forms in independent random variables

  • D. L. Hanson, F. T. Wright
  • Ann . Math . Statist .
  • 1999

Littlewood , On bounded bilinear forms in an infinite number of variables

  • E. J.
  • Quart . J . Math . Oxford
  • 1999

Tail and moment estimates for some types of chaos

  • R. Lata la
  • Studia Math
  • 1999
1 Excerpt

Gaussian Hilbert Spaces

  • S. Janson
  • 1997
1 Excerpt

Orthogonal Decompositions and Functional Limit Theorems for Random Graph Statistics

  • S. Janson
  • Memoirs Amer. Math. Soc. 534, Amer. Math. Soc.,
  • 1994
1 Excerpt

Domination inequality for martingale transforms of a Rademacher sequence

  • P. Hitczenko
  • Israel J. Math
  • 1993
1 Excerpt

Similar Papers

Loading similar papers…