REPRESENTATIONS BY SPINOR GENERA OF TERNARY QUADRATIC FORMS

@inproceedings{SchulzePillot2003REPRESENTATIONSBS,
  title={REPRESENTATIONS BY SPINOR GENERA OF TERNARY QUADRATIC FORMS},
  author={Rainer Schulze-Pillot and Fei Xu},
  year={2003}
}
over the ring of integers Z, where A and B are non-degenerate and symmetric matrices of size m × m and n × n over Z respectively, and A is indefinite with m ≥ 3. It is a necessary condition for solubility of equation (1.1) that it is solvable over Zp for all primes p and the real numbers R. This necessary condition is already sufficient if m − n ≥ 3 [Kn1,Hs]. However the equation (1.1) is no longer a purely local problem when m − n ≤ 2. By the Hasse principle, the necessary condition implies… 
Brauer–Manin obstruction for integral points of homogeneous spaces and representation by integral quadratic forms
Abstract An integer may be represented by a quadratic form over each ring of p-adic integers and over the reals without being represented by this quadratic form over the integers. More generally,
Representation by integral quadratic forms - a survey
An integral symmetric matrix S = (sij) ∈ M sym m (Z) with sii ∈ 2Z gives rise to an integral quadratic form q(x) = 12 xSx on Z. If S is positive definite, the number r(q, t) of solutions x ∈ Z of the
Failures of the integral Hasse principle for affine quadric surfaces
TLDR
This work explores the frequency that such counter-examples arise in a family of affine quadric surfaces defined over the integers.
Groupe de Brauer et points entiers de deux familles de surfaces cubiques affines
Soit~$a$ un entier non nul. Si~$a$ n'est pas de la forme $9n\pm 4$ pour un $n \in {\bf Z}$, il n'y a pas d'obstruction de Brauer-Manin \`a l'existence d'une solution de l'\'equation $x^3+y^3+z^3=a$
Groupe de Brauer et points entiers de deux surfaces cubiques affines
Il est connu depuis Ryley [Ryl25] que tout entier, et meme tout nombre rationnel, peut s’ecrire comme somme de trois cubes de nombres rationnels. La question de savoir quels entiers s’ecrivent comme
ON THE BRAUER – MANIN OBSTRUCTION FOR INTEGRAL POINTS
We give examples of Brauer–Manin obstructions to integral points on open subsets of the projective plane.
Two examples of Brauer–Manin obstruction to integral points
We give two examples of Brauer–Manin obstructions to integral points on open subsets of the projective plane.
Brauer-Manin obstructions to integral points
We study Brauer-Manin obstructions to integral points on open subsets of the projective plane.
Integers Represented by Ternary Quadratic Forms

References

SHOWING 1-10 OF 12 REFERENCES
On spinor exceptional representations
Let f(xί9 , xm) be a quadratic form with integer coefficients and ceZ. If f(x) = c has a solution over the real numbers and if f(x) = c (mod N) is soluble for every modulus N, then at least some form
There are 913 regular ternary forms
The forms under discussion are integral positive definite quadratic forms in three variables. Such a form g is called regular if g represents every integer represented by the genus of g. This can be
Darstellungsmaße indefiniter quadratischer Formen
1. Einleitung. Der Satz yon MINKOWSKI und SIEGEL tiber definite quadratische Formen [8, 11 gestattet es, einen Mittelwert der Darstellungsanzahlen einer Zahl a dutch die verschiedenen
Quadratische Formen
  • Springer-Verlag,
  • 2002
...
1
2
...