• Corpus ID: 51860986

RÉGULATEURS p-ADIQUES EXPLICITES POUR LE K2 DES COURBES ELLIPTIQUES par

@inproceedings{Fourquaux2010REGULATEURSPE,
  title={RÉGULATEURS p-ADIQUES EXPLICITES POUR LE K2 DES COURBES ELLIPTIQUES par},
  author={Lionel Fourquaux},
  year={2010}
}
Résumé. — Dans cet article, nous utilisons le système d’Euler de Kato et la théorie de Perrin-Riou pour établir une formule reliant la valeur en 0 de la fonction L p-adique d’une courbe elliptique définie sur Q, et un régulateur p-adique sur la courbe modulaire X(N). En particulier, nous obtenons une relation explicite entre fonction L p-adique et régulateur p-adique pour la courbe elliptique X0(20). 
Kato’s Euler system and rational points on elliptic curves I: A p-adic Beilinson formula
This article is the first in a series devoted to Kato’s Euler system arising from p-adic families of Beilinson elements in the K-theory of modular curves. It proves a p-adic Beilinson formula
New p-adic hypergeometric functions concerning with syntomic regulators
We introduce new functions, which we call the p-adic hypergeometric functions of logarithmic type. We show the congruence relations that are similar to Dwork's. This implies that they are convergent
Regulators, L-Functions and Rational Points
This article is a revised version of the text of the plenary conference I gave at the XIX Congress of “Unione Matematica Italiana”, held in Bologna in September 2011. It discusses the arithmetic

References

SHOWING 1-10 OF 30 REFERENCES
Théorie d'Iwasawa des représentations p-adiques semi-stables
Soient F une extension finie non ramifiee de Q p et V une representation p-adique galoisienne semi-stable sur F de dimension d. On developpe dans ce texte la theorie d'Iwasawa relative a V et a la Z
Modular forms and p-adic Hodge theory
For a modular form, Deligne constructs an associated `-adic representation of the Galois group GQ ˆ Gal… Q=Q†. We show that it is compatible with the local Langlands correspondence at p ˆ ` in the
On the Tamagawa Number Conjecture for Motives Attached to Modular Forms
We carry out certain automorphic and l-adic computations, the former extending results of Beilinson and Scholl, and the latter using ideas of Kato and Kings, related to explicit motivic cohomology
BEILINSON ’ S CONJECTURES
We give a survey of Beilinson’s conjectures about special values of Lfunctions, with emphasis on the underlying philosophy of mixed motives and motivic cohomology. Introduction. In his seminal paper
The Arithmetic and Geometry of Algebraic Cycles
Preface. Conference Programme. Conference Picture. List of participants. Authors' addresses. Cohomological Methods. Lectures on algebro-geometric Chern-Weil and Cheeger-Chern-Simons theory for vector
Zagier's conjecture on L(E,2)
Abstract. In this paper we introduce an elliptic analog of the Bloch-Suslin complex and prove that it (essentially) computes the weight two parts of the groups K2(E) and K1(E) for an elliptic curve E
Syntomic regulators andp-adic integration I: Rigid syntomic regulators
We construct a new version of syntomic cohomology, called rigid syntomic cohomology, for smooth schemes over the ring of integers of ap-adic field. This version is more refined than previous
PARABOLIC POINTS AND ZETA-FUNCTIONS OF MODULAR CURVES
In this paper we obtain explicit formulas for the values at the center of the critical strip of Dirichlet series connected with weight 2 parabolic forms of the group Γ0(N). In particular, these
Higher regulators and values of L-functions
In the work conjectures are formulated regarding the value of L-functions of motives and some computations are presented corroborating them.
...
1
2
3
...