RÉGULATEURS p-ADIQUES EXPLICITES POUR LE K2 DES COURBES ELLIPTIQUES par
@inproceedings{Fourquaux2010REGULATEURSPE, title={RÉGULATEURS p-ADIQUES EXPLICITES POUR LE K2 DES COURBES ELLIPTIQUES par}, author={Lionel Fourquaux}, year={2010} }
Résumé. — Dans cet article, nous utilisons le système d’Euler de Kato et la théorie de Perrin-Riou pour établir une formule reliant la valeur en 0 de la fonction L p-adique d’une courbe elliptique définie sur Q, et un régulateur p-adique sur la courbe modulaire X(N). En particulier, nous obtenons une relation explicite entre fonction L p-adique et régulateur p-adique pour la courbe elliptique X0(20).
3 Citations
Kato’s Euler system and rational points on elliptic curves I: A p-adic Beilinson formula
- Mathematics
- 2014
This article is the first in a series devoted to Kato’s Euler system arising from p-adic families of Beilinson elements in the K-theory of modular curves. It proves a p-adic Beilinson formula…
New p-adic hypergeometric functions concerning with syntomic regulators
- Mathematics
- 2018
We introduce new functions, which we call the p-adic hypergeometric functions of logarithmic type. We show the congruence relations that are similar to Dwork's. This implies that they are convergent…
Regulators, L-Functions and Rational Points
- Mathematics
- 2013
This article is a revised version of the text of the plenary conference I gave at the XIX Congress of “Unione Matematica Italiana”, held in Bologna in September 2011. It discusses the arithmetic…
References
SHOWING 1-10 OF 30 REFERENCES
Théorie d'Iwasawa des représentations p-adiques semi-stables
- Mathematics
- 2001
Soient F une extension finie non ramifiee de Q p et V une representation p-adique galoisienne semi-stable sur F de dimension d. On developpe dans ce texte la theorie d'Iwasawa relative a V et a la Z…
Modular forms and p-adic Hodge theory
- Mathematics
- 1997
For a modular form, Deligne constructs an associated `-adic representation of the Galois group GQ Gal
Q=Q. We show that it is compatible with the local Langlands correspondence at p ` in the…
On the Tamagawa Number Conjecture for Motives Attached to Modular Forms
- Mathematics
- 2006
We carry out certain automorphic and l-adic computations, the former extending results of Beilinson and Scholl, and the latter using ideas of Kato and Kings, related to explicit motivic cohomology…
BEILINSON ’ S CONJECTURES
- Mathematics
- 2002
We give a survey of Beilinson’s conjectures about special values of Lfunctions, with emphasis on the underlying philosophy of mixed motives and motivic cohomology. Introduction. In his seminal paper…
The Arithmetic and Geometry of Algebraic Cycles
- Mathematics
- 2000
Preface. Conference Programme. Conference Picture. List of participants. Authors' addresses. Cohomological Methods. Lectures on algebro-geometric Chern-Weil and Cheeger-Chern-Simons theory for vector…
Zagier's conjecture on L(E,2)
- Mathematics
- 1995
Abstract. In this paper we introduce an elliptic analog of the Bloch-Suslin complex and prove that it (essentially) computes the weight two parts of the groups K2(E) and K1(E) for an elliptic curve E…
Syntomic regulators andp-adic integration I: Rigid syntomic regulators
- Mathematics
- 2000
We construct a new version of syntomic cohomology, called rigid syntomic cohomology, for smooth schemes over the ring of integers of ap-adic field. This version is more refined than previous…
PARABOLIC POINTS AND ZETA-FUNCTIONS OF MODULAR CURVES
- Mathematics
- 1972
In this paper we obtain explicit formulas for the values at the center of the critical strip of Dirichlet series connected with weight 2 parabolic forms of the group Γ0(N). In particular, these…
Higher regulators and values of L-functions
- Mathematics
- 1985
In the work conjectures are formulated regarding the value of L-functions of motives and some computations are presented corroborating them.