R-diagonal Dilation Semigroups

@inproceedings{Kemp2008RdiagonalDS,
  title={R-diagonal Dilation Semigroups},
  author={Todd Kemp},
  year={2008}
}
This paper addresses extensions of the complex Ornstein-Uhlenbeck semigroup to operator algebras in free probability theory. If a1, . . . , ak are ∗-free R-diagonal operators in a II1 factor, then Dt(ai1 · · · ain) = e −ntai1 · · · ain defines a dilation semigroup on the non-self-adjoint operator algebra generated by a1, . . . , ak. We show that Dt extends (in two different ways) to a semigroup of completely positive maps on the von Neumann algebra generated by a1, . . . , ak. Moreover, we show… CONTINUE READING

Citations

Publications citing this paper.

References

Publications referenced by this paper.
Showing 1-10 of 22 references

Lectures on the Combinatorics of Free Probability

A. Nica, R. Speicher
London Mathematical Society Lecture Note Series, • 2006
View 5 Excerpts
Highly Influenced

Calcul fonctionnel et fonctions carrées dans les espaces L non commutatifs

M. Junge, C. Le Merdy, Q. Xu
C. R. Math. Acad. Sci. Paris • 2003
View 1 Excerpt

Random matrices, free probability and the invariant subspace problem relative to a von Neumann algebra

U. Haagerup
Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, • 2002
View 1 Excerpt

Théorèmes ergodiques maximaux dans les espaces Lp non commutatifs

M. Junge, Q. Xu
C. R. Math. Acad. Sci. Paris • 2002
View 1 Excerpt

Hypercontractivity over complex manifolds

L. Gross
Acta. Math. 182, • 1999
View 1 Excerpt

Similar Papers

Loading similar papers…