R A ] 2 5 N ov 1 99 9 INVARIANT INTEGRATION ON CLASSICAL AND QUANTUM LIE SUPERGROUPS

@inproceedings{Scheunert2001RA,
  title={R A ] 2 5 N ov 1 99 9 INVARIANT INTEGRATION ON CLASSICAL AND QUANTUM LIE SUPERGROUPS},
  author={M. Scheunert and Ru bo Zhang},
  year={2001}
}
Invariant integrals on Hopf superalgebras, in particular, the classical and quantum Lie supergroups, are studied. The uniqueness ~up to scalar multiples ! of a left integral is proved, and a Z2-graded version of Maschke’s theorem is discussed. A construction of left integrals is developed for classical and quantum Lie supergroups. Applied to several classes of examples the construction yields the left integrals in explicit form. ©2001 American Institute of Physics. @DOI: 10.1063/1.1364689 # 

From This Paper

Topics from this paper.

Citations

Publications citing this paper.
Showing 1-2 of 2 extracted citations

References

Publications referenced by this paper.
Showing 1-10 of 33 references

Coseparable Hopf algebras

  • R. G. Larson
  • J. Pure and Appl. Alg. 3
  • 1973
Highly Influential
6 Excerpts

Structure and representations of the quantum supergroup OSP q ( 2 u 2 n )

  • R. B. Zhang
  • J . Math . Phys .
  • 2000

Structure and representations of the quantum supergroup OSPq(2|2n)

  • R. B. Zhang
  • Univ. of Queensland preprint
  • 1999
1 Excerpt

Foundations of quantum group theory

  • S. Majid
  • Cambridge University Press, Cambridge
  • 1995
1 Excerpt

Finite dimensional irreducible representations of the quantum supergroup Uq(gl(m/n)

  • R. B. Zhang
  • J. Math. Phys. 34
  • 1993
2 Excerpts

Finite-dimensional representations of Uq(C(n + 1)) at arbitrary q

  • R. B. Zhang
  • J. Phys. A: Math. Gen. 26
  • 1993
1 Excerpt

Similar Papers

Loading similar papers…