Query Recommendations for Interactive Database Exploration

Abstract

Relational database systems are becoming increasingly popular in the scientific community to support the interactive exploration of large volumes of data. In this scenario, users employ a query interface (typically, a web-based client) to issue a series of SQL queries that aim to analyze the data and mine it for interesting information. First-time users, however, may not have the necessary knowledge to know where to start their exploration. Other times, users may simply overlook queries that retrieve important information. To assist users in this context, we draw inspiration from Web recommender systems and propose the use of personalized query recommendations. The idea is to track the querying behavior of each user, identify which parts of the database may be of interest for the corresponding data analysis task, and recommend queries that retrieve relevant data. We discuss the main challenges in this novel application of recommendation systems, and outline a possible solution based on collaborative filtering. Preliminary experimental results on real user traces demonstrate that our framework can generate effective query recommendations.

DOI: 10.1007/978-3-642-02279-1_2
View Slides

Extracted Key Phrases

01020200920102011201220132014201520162017
Citations per Year

112 Citations

Semantic Scholar estimates that this publication has 112 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@inproceedings{Chatzopoulou2009QueryRF, title={Query Recommendations for Interactive Database Exploration}, author={Gloria Chatzopoulou and Magdalini Eirinaki and Neoklis Polyzotis}, booktitle={SSDBM}, year={2009} }