Quenched Central Limit Theorems for Random Walks in Random Scenery

Abstract

When the support of X1 is a subset of N , (Sn)n≥0 is called a renewal process. Each time the random walk is said to evolve in Z, it implies that the walk is truly d-dimensional, i.e. the linear space generated by the elements in the support of X1 is d-dimensional. Institut Camille Jordan, CNRS UMR 5208, Université de Lyon, Université Lyon 1, 43, Boulevard du 11 novembre 1918, 69622 Villeurbanne, France. E-mail: nadine.guillotin@univlyon1.fr Mathematical Institute, Leiden University, P.O. Box 9512, NL-2300 RA Leiden, The Netherlands. E-mail: poisatj@math.leidenuniv.nl

Cite this paper

@inproceedings{GuillotinPlantard2013QuenchedCL, title={Quenched Central Limit Theorems for Random Walks in Random Scenery}, author={Nadine Guillotin-Plantard and Julien Poisat}, year={2013} }