Quaternionic Grassmannians and Borel classes in algebraic geometry
@article{Panin2021QuaternionicGA, title={Quaternionic Grassmannians and Borel classes in algebraic geometry}, author={Ivan Panin and Charles H. Walter}, journal={St. Petersburg Mathematical Journal}, year={2021} }
<p>The quaternionic Grassmannian <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H upper G r left-parenthesis r comma n right-parenthesis">
<mml:semantics>
<mml:mrow>
<mml:mi>H Gr</mml:mi>
<mml:mo><!-- --></mml:mo>
<mml:mo stretchy="false">(</mml:mo>
<mml:mi>r</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>n</mml:mi>
<mml:mo stretchy="false">)</mml:mo>
</mml:mrow>
<mml:annotation…
15 Citations
MOTIVIC EULER CHARACTERISTICS AND WITT-VALUED CHARACTERISTIC CLASSES
- MathematicsNagoya Mathematical Journal
- 2019
This paper examines Euler characteristics and characteristic classes in the motivic setting. We establish a motivic version of the Becker–Gottlieb transfer, generalizing a construction of Hoyois.…
On the Relation of Symplectic Algebraic Cobordism to Hermitian K-Theory
- MathematicsProceedings of the Steklov Institute of Mathematics
- 2019
We reconstruct hermitian K-theory via algebraic symplectic cobordism. In the motivic stable homotopy category SH(S) there is a unique morphism g : MSp -> BO of commutative ring T- spectra which sends…
Some Recent Trends in Motivic Homotopy Theory
- Mathematics
- 2020
Introduction Since its inception in the 1990s by Morel and Voevodsky, and Voevodsky’s application to the proofs of the Milnor conjecture and the Bloch–Kato conjecture, A1-homotopy theory or, as it is…
Motivic Pontryagin classes and hyperbolic orientations
- Mathematics
- 2022
We introduce the notion of hyperbolic orientation of a motivic ring spectrum, which generalises the various existing notions of orientation (by the groups GL, SLc, SL, Sp). We show that hyperbolic…
Motivic Cell Structures for Spherical Varieties
- Mathematics
- 2018
In this note, we give a general method to obtain unstable motivic cell structures, following Wendt's application of the Bialynicki-Birula algebraic Morse theory. We then apply the method to spherical…
THE BOREL CHARACTER
- MathematicsJournal of the Institute of Mathematics of Jussieu
- 2021
The main purpose of this article is to define a quadratic analogue of the Chern character, the so-called Borel character, that identifies rational higher Grothendieck-Witt groups with a sum of…
Moving lemmas in mixed characteristic and applications
- Mathematics
- 2022
The present paper contains new geometric theorems proven in mixed characteristic case. We derive a bunch of cohomological consequences using these geometric theorems. Among them an isotropy result…
The homotopy Leray spectral sequence
- Mathematics, Computer Science
- 2018
This work builds a spectral sequence in motivic homotopy that is analogous to both the Serre spectral sequences in algebraic topology and the Leray spectral sequencein algebraic geometry and gives a convenient description of its $E_2-page.
Chow–Witt rings of classifying spaces for symplectic and special linear groups
- MathematicsJournal of Topology
- 2019
We compute the Chow–Witt rings of the classifying spaces for the symplectic and special linear groups. In the structural description we give, contributions from real and complex realization are…
References
SHOWING 1-10 OF 21 REFERENCES
On the motivic commutative ring spectrum $\mathbf {BO}$
- MathematicsSt. Petersburg Mathematical Journal
- 2019
We construct an algebraic commutative ring T -spectrum BO which is stably fibrant and (8, 4)-periodic and such that on SmOp/S the cohomology theory (X, U) 7→ BO(X+/U+) and Schlichting’s hermitian…
Orientations and transfers in cohomology of algebraic varieties
- Mathematics
- 2007
Algebro-geometric cohomology theories are described axiomatically, with a systematic treatment of their orientations. For every oriented theory, transfer mappings are constructed for mappings of…
The general dévissage theorem for Witt groups of schemes
- Mathematics
- 2007
Abstract.Let
$${\pi: Z \hookrightarrow X}$$
be a closed subscheme of the noetherian scheme X. We show that if X has a dualizing complex
$${\mathcal{I}\bullet}$$
then there exists a dualizing…
Quadratic and Hermitian Forms over Rings
- Mathematics
- 1991
I. Hermitian Forms over Rings.- 1. Rings with Involution.- 2. Sesquilinear and Hermitian Forms.- 3. Hermitian Modules.- 4. Symplectic Spaces.- 5. Unitary Rings and Modules.- 6. Hermitian Spaces over…
The relation of cobordism to k-theories
- History
- 1966
• November 2nd, 2006: Talk 1 by Marc Siegmund: This should be an introduction to bordism, tell us the geometric constructions and mention the ring structure of Ω ∗ . You might take the books of…
Vector bundles on projective 3-space
- Mathematics
- 1976
On a compact complex manifold X it is an interesting problem to compare the continuous and holomorphic vector bundles. The case of line-bundles is classical and is well understood in the framework of…
Algebraic Cobordism
- Mathematics
- 2007
Together with F. Morel, we have constructed in [6, 7, 8] a theory of algebraic cobordism, an algebro-geometric version of the topological theory of complex cobordism. In this paper, we give a survey…
Riemann surfaces and spin structures
- Mathematics
- 1971
© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1971, tous droits réservés. L’accès aux archives de la revue « Annales scientifiques de l’É.N.S. » ( http://www.…
Characteristic Classes
- Mathematics
- 2004
Let (P,M,G) be a principle fibre bundle over M with group G, connection ω and quotient map π. Recall that for all p ∈ P the Lie algebra G is identified with VpP := Kerπp∗ via the derivative of lp : G…